Skip to main content

Part of the book series: Adaptation, Learning, and Optimization ((ALO,volume 9))

  • 873 Accesses

Abstract

It is fairly accepted fact that one of the most important human activities is decision making. It does not matter what field of activity one belongs to. Whether it is political, military, economic or technological, decisions have a far reaching influence on our lives. Optimization techniques play an important role in structural design, the very purpose of which is to find the best ways so that a designer or a decision maker can derive a maximum benefit from the available resources. The methods of optimization can be divided into two category such as traditional optimization algorithms and modern optimization algorithms. The traditional optimization algorithms turn into an independent subject began in 1947 when Dantzig [1, 2] proposed the simplex method for solving general linear optimization problems. From then on, study on the optimization method is booming. Many methods of optimization are proposed [3] sequentially as follow: unconstrained optimization methods, large-scale unconstrained optimization methods, nonlinear least squares methods, linear constrained optimization methods, nonlinear constrained optimization methods and so on. These traditional mathematical gradient-based optimal techniques have been applied to the design of optimal structures [4]. While, many practical engineering optimal problems are very complex and hard to solve by traditional method [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dantzig, G.B.: On the need for a systems optimization laboratory, in optimization methods for resource allocation. In: Cottle, R.W., Krarup, J. (eds.) Proceedings of a 1971 NATO Conference. English Universities Press, London (1974)

    Google Scholar 

  2. Albers, D.J., Reid, C.: An interview with George B. Dantzig: the father of linear programming. The College Mathematics Journal 17(4), 292–314 (1986)

    MathSciNet  Google Scholar 

  3. Gleick, J.: Breakthrough in problem solving, New York Times, November 18 (1984)

    Google Scholar 

  4. Rao, V.R., Iyengar, N.G.R., Rao, S.S.: Optimization of wing structures to satisfy strength and frequency requirement. Computers and Structures 10(4), 669–674 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. Nanakorn, P., Konlakarn, M.: An adaptive penalty function in genetic algorithms for structural design optimization. Computers and Structures 79(29-30), 2527–2539 (2001)

    Article  Google Scholar 

  6. Fogel, D.B.: The advantage of evolutionary computation. In: Proceeding of Bio-computing Emergent Computation, pp. 1–11. World Scientific Press, Singapore (1997)

    Google Scholar 

  7. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art. Computer Methods in Applied Mechanics and Engineering 191(11-12), 1245–1287 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Holland, J.H.: Adaptation in natural and artificial systems. The University of Michigan Press (1975)

    Google Scholar 

  9. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceeding of National Academy of Sciences of the USA 79(8), 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  11. Minsky, M., Papert, S.: Perceptrons: An introduction to computational geometry. MIT Press, Cambridge (1969)

    MATH  Google Scholar 

  12. Dorigo, M.: Ottimizzazione, apprendimento automatico, ed algoritmi basati su metafora naturale (Optimization, learning and natural algorithms). Ph.D. Thesis, Politecnico di Milano, Italy (1992) (in Italian)

    Google Scholar 

  13. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial intelligence through simulated evolution. John Wiley, New York (1996)

    Google Scholar 

  14. Barnard, C.J., Sibly, R.M.: Producers and scroungers: a general model and its application to captive flocks of house sparrows. Animal Behavior 29(2), 543–550 (1981)

    Article  Google Scholar 

  15. Bonabeau, E., Dorigo, M., Theraulza, G.: Inspiration for optimization from social insect behavior. Nature 406(4), 39–42 (2000)

    Article  Google Scholar 

  16. Dorigo, M., Di Caro, G., Gambardella, L.: Ant algorithms for discrete optimization. Artificial Life 5(3), 137–172 (1999)

    Article  Google Scholar 

  17. Kennedy, J., Eberhart, R.C.: Swarm intelligence. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  18. He, S., Wu, Q.H., Saunders, J.R.: Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Transactions on Evolutionary Computation 13(5), 973–990 (2009)

    Article  Google Scholar 

  19. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Press, Piscataway (1995)

    Chapter  Google Scholar 

  20. Plevris, V., Papadrakakis, M.: A hybrid particle swarm-gradient algorithm for global structural optimization. Computer-Aided Civil and Infrastructure Engineering 26(1), 48–68 (2011)

    Google Scholar 

  21. Kaveh, A., Talatahari, S.: Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Computers & Structures 87(5-6), 267–283 (2009)

    Article  Google Scholar 

  22. Wu, Q.H., Cao, Y.J., Wen, J.Y.: Optimal reactive power dispatch using an adaptive genetic algorithm. Electrical Power and Energy Systems 20(8), 563–569 (1988)

    Article  Google Scholar 

  23. Van den Bergh, F., Engelbrecht, A.P.: Training product unit networks using cooperative particle swarm optimizers. In: Proc. of the Third Genetic and Evolutionary Computation Conference, San Francisco, USA (2001)

    Google Scholar 

  24. Perez, R.E., Behdinan, K.: Particle swarm approach for structural optimization. Computers and Structures 85(19-20), 1579–1588 (2007)

    Article  Google Scholar 

  25. He, S., Wu, Q.H., Saunders, J.R.: A group search optimizer for neural network training. Springer, Heidelberg (2006)

    Google Scholar 

  26. Shen, H., Zhou, Y.H., Niu, B., Wu, Q.H.: An improved group search optimizer for mechanical design optimization problems. Progress in Natural Science 19(1), 91–97 (2009)

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, L., Liu, F. (2011). Introduction of Swarm Intelligent Algorithms. In: Group Search Optimization for Applications in Structural Design. Adaptation, Learning, and Optimization, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20536-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20536-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20535-4

  • Online ISBN: 978-3-642-20536-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics