Skip to main content

Wavelength Filters

  • Chapter
  • First Online:
  • 3172 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 161))

Abstract

The chapter reviews filters (to be) used in fibre optic communication: Fibre coupler filters, diffraction gratings, arrayed waveguide gratings, fibre Bragg gratings, Fabry–Pérot interferometers, thin-film and microring filters, interleavers, and acousto-optic filters. The presentations include the underlying basic physics, implementations of filters and modules, and typical performance data in the wavelength domain, but relevant phase properties are discussed as well. Attention is also given to system implications of the various device characteristics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. W.J. Tomlinson, Wavelength multiplexing in multimode optical fibers. Appl. Opt. 16, 2180–2194 (1977)

    Article  ADS  Google Scholar 

  2. K. Kobayashi, M. Seki, Microoptic grating multiplexers and optical isolators for fiber-optic communications. IEEE J. Quantum Electron. QE-16, 11–22 (1980)

    Article  ADS  Google Scholar 

  3. J. Lipson, C.A. Young, P.D. Yeates, J.C. Masland, S.A. Wartonick, G.T. Harvey, P.H. Read, A four-channel lightwave subsystem using wavelength division multiplexing. J. Lightw. Technol. LT-3, 16–20 (1985)

    Article  ADS  Google Scholar 

  4. N. Lewis, M. Miller, J. Ravita, R. Winfrey, M. Page, W. Lewis, A four channel bi-directional data link using wavelength division multiplexing, 9th Internat. Fiber Optic Communications and Local Area Networks Exposition (FOCLAN85), San Francisco, CA, USA, 18–20 Sept. 1985. Proc. SPIE, vol. 574 (1985), pp. 47–54

    Google Scholar 

  5. T. Ohara, H. Takahara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, H. Takahashi, Over 1000 channel, 6.25 GHz-spaced ultra-DWDM transmission with supercontinuum multi-carrier source, Opt. Fiber Commun. Conf. (OFC'2005), Techn. Digest (Anaheim, CA, USA, 2005), paper OWA6

    Google Scholar 

  6. A.H. Gnauck, G. Charlet, P. Tran, P.J. Winzer, C.R. Doerr, J.C. Centanni, E.C. Burrows, T. Kawanishi, T. Sakamoto, K. Higuma, 25.6-Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals. J. Lightw. Technol. 26, 79–84 (2008)

    Article  ADS  Google Scholar 

  7. C.K. Madsen, J.H. Zhao, Optical Filter Design and Analysis, a Signal Processing Approach (Wiley, New York, 1999)

    Book  Google Scholar 

  8. C. Peucheret, Phase characteristics of optical filters, in Wavelength Filters in Fibre Optics, ed. by H. Venghaus (Springer, Berlin, Heidelberg, 2006), Chap. 2

    Google Scholar 

  9. G. Lenz, B.J. Eggleton, C.R. Giles, C.K. Madsen, R.E. Slusher, Dispersive properties of optical filters for WDM systems. IEEE J. Quantum. Electron. 34, 1390–1402 (1998)

    Article  ADS  Google Scholar 

  10. L. Poladian, Group delay reconstruction for fiber Bragg gratings in reflection and transmission. Opt. Lett. 22, 1571–1573 (1997)

    Article  ADS  Google Scholar 

  11. M. Tilsch, C.A. Hulse, F.K. Zernik, R.A. Modavis, C.J. Addiego, R.B. Sargent, N.A. O'Brien, H. Pinkney, A.V. Turukhin, Experimental demonstration of thin-film dispersion compensation for 50-GHz filters. IEEE Photon. Technol. Lett. 15, 66–68 (2003)

    Article  ADS  Google Scholar 

  12. B. Costa, D. Mazzoni, M. Puleo, E. Vezzoni, Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED's. IEEE J. Quantum Electron. QE-18, 1509–1514 (1982)

    Article  ADS  Google Scholar 

  13. S. Ryu, Y. Horichi, K. Mochizuki, Novel chromatic dispersion measurement method over continuous gigahertz tuning range. J. Lightw. Technol. 7, 1177–1180 (1989)

    Article  ADS  Google Scholar 

  14. G. Genty, T. Niemi, H. Ludvigsen, New method to improve the accuracy of group delay measurements using the phase-shift technique. Opt. Commun. 204, 119–126 (2002)

    Article  ADS  Google Scholar 

  15. X. Yi, F. Wei, Y. Wang, C. Lu, W.D. Zong, Group delay measurement of WDM components using photonic microwave technique. Microwave Opt. Technol. Lett. 35, 346–348 (2002)

    Article  Google Scholar 

  16. A.J. Barlow, R.S. Jones, K.W. Forsyth, Technique for direct measurement of single-mode fiber chromatic dispersion. J. Lightw. Technol. LT-5, 1207–1213 (1987)

    Article  ADS  Google Scholar 

  17. S.E. Mechels, J.B. Schlager, D.L. Franzen, Accurate measurements of the zero-dispersion wavelength in optical fibers. J. Res. Natl. Inst. Stand. Technol. 102, 333–347 (1997)

    Article  Google Scholar 

  18. S.D. Dyer, K.B. Rochford, A.H. Rose, Fast and accurate low-coherence interferometric measurement of fiber Bragg grating dispersion and reflectance. Opt. Express 5, 262–266 (1999)

    Article  ADS  Google Scholar 

  19. C. Peucheret, F. Liu, R.J.S. Pedersen, Measurement of small dispersion values in optical components. Electron. Lett. 35, 409–411 (1999)

    Article  Google Scholar 

  20. K. Ogawa, Characterization of chromatic dispersion of optical filters by high-stability real-time spectral interferometry. Appl. Opt. 45, 6718–6722 (2006)

    Article  ADS  Google Scholar 

  21. D. Dai, W. Mei, S. He, Using a tapered MMI to flatten the passband of an AWG. Opt. Commun. 219, 233–239 (2003)

    Article  ADS  Google Scholar 

  22. M.G. Thompson, D. Brady, S.W. Roberts, Chromatic dispersion and bandshape improvement of SOI flatband AWG multi/demultiplexers by phase-error correction. IEEE Photon. Technol. Lett. 15, 924–926 (2003)

    Article  ADS  Google Scholar 

  23. H.-J. Deyerl, C. Peucheret, B. Zsigri, F. Floreani, N. Plougmann, S.J. Hewlett, M. Kristensen, P. Jeppesen, A compact low dispersion fiber Bragg grating with high detuning tolerance for advanced modulation formats. Opt. Commun. 247, 93–100 (2005)

    Article  ADS  Google Scholar 

  24. M. Ibsen, R. Feced, P. Petropoulos, M.N. Zervas, High reflectivity linear-phase fibre Bragg gratings, Proc. 26th Europ. Conf. Opt. Commun. (ECOC 2000), (VDE, Berlin, 2000), vol. 1, pp. 53–54

    Google Scholar 

  25. X.X. Zhang, Thin film optical filter – an enabling technology for modern optical communication systems, white paper, www.auxora.com, in Active and Passive Optical Components for WDM Communications IV, ed. by A.K. Dutta, A.A.S. Awwal, N.K. Dutta, Y. Ohishi. Proc. SPIE, vol. 5595 (2004), pp. 349–358. DOI: 10.1117/12.580087

  26. F. Havermeyer, W. Liu, C. Moser, D. Psaltis, G.J. Steckman, Volume holographic grating-based continuously tunable optical filter. Opt. Eng. 43, 2017–2021 (2004)

    Article  ADS  Google Scholar 

  27. H. Chotard, Y. Painchaud, A. Mailloux, M. Morin, F. Trépanier, M. Guy, Group delay ripple of cascaded Bragg grating gain flattening filters. IEEE Photon. Technol. Lett. 14, 1130–1132 (2002)

    Article  ADS  Google Scholar 

  28. L. Poladian, Understanding profile-induced group-delay ripple in Bragg gratings. Appl. Opt. 39, 1920–1923 (2000)

    Article  ADS  Google Scholar 

  29. S. Jamal, J.C. Cartledge, Variation in the performance of multispan 10-Gb/s systems due to the group delay ripple of dispersion compensating fiber Bragg gratings. J. Lightw. Technol. 20, 28–35 (2002)

    Article  ADS  Google Scholar 

  30. L.-S. Yan, T. Luo, Q. Yu, Y. Xie, K.-M. Feng, R. Khosravani, A.E. Willner, Investigation of performance variations due to the amplitude of group-delay ripple in chirped fiber Bragg gratings. Opt. Fiber Technol. 12, 238–242 (2006)

    Article  ADS  Google Scholar 

  31. H. Geiger, M. Ibsen, Complexity limitations of optical networks from out-of-band dispersion of grating filters, Proc. 24th Europ. Conf. Opt. Commun. (ECOC 1998), Madrid, Spain (1998), pp. 405–406

    Google Scholar 

  32. G. Castanon, T. Hoshida, Impact of filter dispersion slope in NRZ, CS-RZ, IMDPSK and RZ formats on ultra high bit-rate systems, Proc. 28th Europ. Conf. Opt. Commun. (ECOC 2002), Copenhagen, Denmark (2002), vol. 4, paper 9.6.1

    Google Scholar 

  33. M. Lee, N. Antoniades, On the impact of filter dispersion slope on the performance of 40 Gbps DWDM systems and networks. Photon. Netw. Commun. 14, 97–102 (2007). doi: 10.1007/s11107-006-0051-0

    Article  Google Scholar 

  34. M. Kuznetsov, N.M. Froberg, S.R. Henion, K.A. Rauschenbach, Power penalty for optical signals due to dispersion slope in WDM filter cascades. IEEE Photon. Technol. Lett. 11, 1411–1413 (1999)

    Article  ADS  Google Scholar 

  35. C. Riziotis, M.N. Zervas, Effect of in-band group delay ripple on WDM filter performance, Proc. 27th Europ. Conf. Opt. Commun. (ECOC 2001), Amsterdam, The Netherlands (2001), paper Th.M.1.3, pp. 492–493

    Google Scholar 

  36. A. Dochhan, G. Göger, S. Smolorz, H. Rohde, W. Rosenkranz, The influence of FBG phase ripple distortions – comparisons of different modulation formats, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'2008), Techn. Digest (San Diego, CA, USA, 2008), paper JWA60

    Google Scholar 

  37. V. Veljanovski, M. Alfiad, D. van den Borne, S.L. Jansen, T. Wuth, Equalization of FBG-induced group-delay ripples penalties using a coherent receiver and digital signal processing, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'2009), Techn. Digest (San Diego, CA, USA, 2009), paper JThA40

    Google Scholar 

  38. A. Dochhan, S. Smolorz, H. Rohde, W. Rosenkranz, Electronic equalization of FBG phase ripple distortions in 43 Gb/s WDM systems, Proc. 10th ITG Topical Meeting Photon. Networks, 04–05 May, 2009, Leipzig, Germany (2009), pp. 175–181

    Google Scholar 

  39. J.T. Mok, J.L. Blows, B.J. Eggleton, Investigation of group delay ripple distorted signals transmitted through all-optical 2R regenerators. Opt. Express 12, 4411–4422 (2004)

    Article  ADS  Google Scholar 

  40. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd edn. (Academic, New York, 1991)

    Google Scholar 

  41. H. Kogelnik, Theory of optical waveguides, in Guided-Wave Optoelectronics, ed. by T. Tamir (Springer, Berlin, 1988), Chap. 2

    Google Scholar 

  42. S.L. Chuang, Physics of Photonic Devices, 2nd edn. (Wiley, Hoboken, 2009)

    Google Scholar 

  43. K. Jedrezejewski, Biconical fused taper – a universal fibre devices technology. Opto-Electr. Rev. 8, 153–159 (2000)

    Google Scholar 

  44. M. Rusu, O.G. Okhotnikov, Practical method for fabricating dense WDM fiber couplers with arbitrary wavelength channels, in Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies, ed. by O. Iancu, A. Manea, D. Cojoc. Proc. SPIE, vol. 5227 (2003), pp. 402–409

    Google Scholar 

  45. www.foc-fo.de

  46. J.H. Chang, B.G. Jeon, J.K. Kang, J.H. Jung, Y.K. Kim, Characteristics of optical fiber WDM with high isolation, Proc. 1999 IEEE Region 10 Conf., The Silla Cheju, Cheju Islands, Korea, Sept. 15–17, 1999

    Google Scholar 

  47. www.newport.com

  48. www.itflabs.com

  49. M. Born, E. Wolf, Principles of Optics, 6th edn. (Pergamon, Oxford, 1980)

    Google Scholar 

  50. Diffraction Gratings Handbook, 6th edn., ed. by C. Palmer, 1st edn. (E. Loewen, Newport, 2005)

    Google Scholar 

  51. J.P. Laude, Diffraction gratings WDM components, in Wavelength Filters in Fibre Optics, ed. by H. Venghaus (Springer, Berlin, 2006), Chap. 3

    Google Scholar 

  52. www.yenista.com

  53. www.ibsen.dk

  54. www.kosi.com

  55. www.wasatchphotonics.com

  56. J.B.D. Soole, K.R. Poguntke, A. Scherer, H.P. LeBlanc, C. Chang-Hasnain, J.R. Hayes, C. Caneau, R. Bhat, M.A. Koza, Wavelength-selectable laser emission from a multistripe array grating integrated cavity laser. Appl. Phys. Lett. 61, 2750–2752 (1992)

    Article  ADS  Google Scholar 

  57. C. Cremer, N. Emeis, M. Schier, G. Heise, G. Ebbinghaus, L. Stoll, Grating spectrograph integrated with photodiode array in InGaAsP/InP. IEEE Photon. Technol. Lett. 4, 108–110 (1992)

    Article  ADS  Google Scholar 

  58. H. Jian-Jun, B. Lamontagne, A. Delage, L. Erickson, M. Davies, E.S. Koteles, Monolithic integrated wavelength demultiplexer based on a waveguide Rowland circle grating in InGaAsP/InP. J. Lightw. Technol. 16, 631–638 (1998)

    Article  ADS  Google Scholar 

  59. A. Densmore, V.I. Tolstikhin, K. Primenov, DWDM data receiver based on monolithic integration of an echelle grating demultiplexer and waveguide photodiodes. Electron. Lett. 41, 766–767 (2005)

    Article  Google Scholar 

  60. S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P.A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, D.X. Xu, Planar waveguide echelle gratings in silica-on-silicon. IEEE Photon. Technol. Lett. 16, 503–505 (2004)

    Article  ADS  Google Scholar 

  61. W. Wang, Y. Tang, Y. Wang, H. Qu, Y. Wu, T. Li, J. Yang, Y. Wang, M. Liu, Etched-diffraction-grating-based planar waveguide demultiplexer on silicon-on-insulator. Opt. Quantum Electron. 36, 559–566 (2004)

    Article  Google Scholar 

  62. E. Bisaillon, D.T. Tan, J. Laniel, A. Jugessur, L. Chrostowski, A.G. Kirk, A shallow-etched distributed-grating wavelength demultiplexer in SOI, in Integrated Photonics Research and Applications/Nanophotonics, Techn. Digest (CD) (Optical Society of America, 2006), paper IWA2

    Google Scholar 

  63. J. Brouckaert, W. Bogaerts, P. Dumon, D. Van Thourhout, R. Baets, Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform. J. Lightw. Technol. 25, 1269–1275 (2007)

    Article  ADS  Google Scholar 

  64. F. Horst, Silicon integrated waveguide devices for filtering and wavelength demultiplexing, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'10), Techn. Digest (San Diego, CA, USA, 2010), paper OWJ3

    Google Scholar 

  65. M.K. Smit, New focusing and dispersive planar component based on an optical phased array. Electron. Lett. 24, 385–386 (1988)

    Article  Google Scholar 

  66. H. Takahashi, S. Suzuki, K. Kato, I. Nishi, Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution. Electron. Lett. 26, 87–88 (1990)

    Article  Google Scholar 

  67. C. Dragone, An NxN optical multiplexer using a planar arrangement of two star couplers. IEEE Photon. Technol. Lett. 3, 812–815 (1991)

    Article  ADS  Google Scholar 

  68. C. van Dam, InP-based polarization independent wavelength demultiplexers, PhD thesis, Delft University of Technology, The Netherlands (1997). ISBN: 90-9010798-3

    Google Scholar 

  69. X.J.M. Leitjens, B. Kuhlow, M.K. Smit, Arrayed waveguide gratings, in Wavelength Filters in Fibre Optics, ed. by H. Venghaus (Springer, Berlin, 2006), Chap. 4

    Google Scholar 

  70. M.K. Smit, C. van Dam, PHASAR-based WDM-devices: principles, design and applications. IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996)

    Article  Google Scholar 

  71. J.B.D. Soole, M.R. Amersfoort, H.P. LeBlanc, N.C. Andreadakis, A. Rajhel, C. Caneau, R. Bhat, M.A. Koza, C. Youtsey, I. Adesida, Use of multimode interference couplers to broaden the passband of wavelength-dispersive integrated WDM filters. IEEE Photon. Technol. Lett. 8, 1340–1342 (1996)

    Article  ADS  Google Scholar 

  72. M.R. Amersfoort, J.B.D. Soole, H.P. LeBlanc, N.C. Andreadakis, A. Rajhel, C. Caneau, Passband broadening of integrated arrayed waveguide filters using multimode interference couplers. Electron. Lett. 32, 449–451 (1996)

    Article  Google Scholar 

  73. K. Okamoto, A. Sugita, Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns. Electron. Lett. 32, 1661–1662 (1996)

    Article  Google Scholar 

  74. C.G.P. Herben, X.J.M. Leitjens, D.H.P. Maat, H. Blok, M.K. Smit, Crosstalk performance of integrated optical cross-connects. J. Lightw. Technol. 17, 1126–1134 (1999)

    Article  ADS  Google Scholar 

  75. U. Hilbk, T. Hermes, J. Saniter, F.-J. Westphal, High capacity WDM overlay on a passive optical network. Electron. Lett. 32, 2162–2163 (1996)

    Article  Google Scholar 

  76. S. Das, B. Grek, J. Sun, M. Jain, L.G. Kazowski, MAWG: Multicasting arrayed waveguide grating for WDM-PON applications, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'2008), Techn. Digest (San Diego, CA, USA, 2008), paper JWA35

    Google Scholar 

  77. Y. Hida, Y. Hibino, H. Okazaki, Y. Ohmori, 10 m-long silica-based waveguide with a loss of 1.7 dB/m, Integrated Photonics Research (IPR'95), Techn. Digest (Dana Point, CA, USA, 1995), pp. 49–51

    Google Scholar 

  78. Y. Hibino, H. Okazaki, Y. Hida, Y. Ohmori, Propagation loss characteristics of long silica-based optical waveguides on 5-inch Si wafers. Electron. Lett. 29, 1847–1848 (1993)

    Article  Google Scholar 

  79. www.enablence.com

  80. Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, S. Sumida, Athermal silica-based arrayed-waveguide grating multiplexer. Electron. Lett. 33, 1945–1947 (1997)

    Article  Google Scholar 

  81. G. Heise, H.W. Schneider, P.C. Clemens, Optical phased array filter module with passively compensated temperature dependence, Proc. 24th Europ. Conf. Opt. Commun. (ECOC 1998), Madrid, Spain (1998), pp. 319–320

    Google Scholar 

  82. A.J. Ticknor, B.P. McGinnis, T. Tarter, M. Yan, Efficient passive and active wavelength-stabilization techniques for AWGs and integrated optical filters, Opt. Fiber Commun. Conf. (OFC'2005), Techn. Digest (Anaheim, CA, USA, 2005), paper NThL3

    Google Scholar 

  83. www.neophotonics.com

  84. Y. Hida, Y. Hibino, T. Kitoh, Y. Inoue, T. Shibata, A. Himeno, 400-channel 25-GHz spacing arrayed-waveguide grating covering a full range of C- and L-bands, Opt. Fiber Commun. Conf. (OFC'2001), Techn. Digest (Anaheim, CA, USA, 2001), paper WB2

    Google Scholar 

  85. K. Takada, M. Abe, T. Shibata, K. Okamoto, 5 GHz-spaced 4200-channel two-stage tandem demultiplexer for ultra-multi-wavelength light source using supercontinuum generation. Electron. Lett. 38, 572–573 (2002)

    Article  Google Scholar 

  86. NTT Photonics Labs, Annual Report 2005

    Google Scholar 

  87. K. Takada, M. Abe, T. Shibata, K. Okamoto, 1-GHz-spaced 16-channel arrayed-waveguide grating for a wavelength reference standard in DWDM network systems. J. Lightw. Technol. 20, 850–853 (2002)

    Article  ADS  Google Scholar 

  88. M. Zirngibl, C. Dragone, C.H. Joyner, Demonstration of a 15 ⨉ 15 arrayed waveguide multiplexer on InP. IEEE Photon. Technol. Lett. 4, 1250–1253 (1992)

    Article  ADS  Google Scholar 

  89. F.M. Soares, W. Jiang, N.K. Fontaine, S.W. Seo, J.H. Baek, R.G. Broeke, J. Cao, K. Okamoto, F. Olsson, S. Lourdudoss, S.J.B. Yoo, InP-based arrayed-waveguide grating with a channel spacing of 10 GHz, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'2008), Techn. Digest (San Diego, CA, USA, 2008), paper JThA.23

    Google Scholar 

  90. R. Nagarajan, M. Smit, Photonic integration. IEEE LEOS Newsletter 21, 4–10 (2007)

    Google Scholar 

  91. S.C. Nicholes, M.L. Mašanović, B. Jevremović, E. Lively, L.A. Coldren, D.J. Blumenthal, The world's first InP 8 ⨉ 8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC 2009), Techn. Digest (San Diego, CA, USA, 2009), post-deadline paper PDP.B1

    Google Scholar 

  92. R. Nagarajan, M. Kato, S. Corzine, P. Evans, C. Joyner, R. Schneider, F. Kish, D. Welch, Monolithic, multi-channel DWDM transmitter photonic integrated circuits, Proc. 21st IEEE Int. Semicond. Laser Conf. (ISLC2008), Sorrento, Italy, 14–18 Sept. 2008, paper MA3. doi: 10.1109/ISLC.2008.4635981

    Google Scholar 

  93. www.infinera.com

  94. J. Kobayashi, Y. Inoue, T. Matsuura, T. Maruno, Tunable and polarization-insensitive arrayed-waveguide grating multiplexer fabricated from fluorinated polyimides. IEICE Trans. Electron. E81-C, 1020–1026 (1998)

    Google Scholar 

  95. Jia Jiang, C.L. Callender, C. Blanchetiere, J.P. Noad, S. Chen, J. Ballato, D.W. Smith, Jr., Arrayed waveguide gratings based on perfluorocyclobutane polymers for CWDM applications. IEEE Photon. Technol. Lett. 18, 370–372 (2006)

    Article  ADS  Google Scholar 

  96. J.-M. Lee, J.T. Ahn, S. Park, M.-H. Lee, Athermal polymeric arrayed-waveguide grating by partial detachment from a Si substrate. ETRI Journal 26, 281–284 (2004)

    Article  Google Scholar 

  97. K.O. Hill, Y. Fujii, D.C. Johnson, B.S. Kawasaki, Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett. 32, 647–649 (1978)

    Article  ADS  Google Scholar 

  98. B.S. Kawasaki, K.O. Hill, D.C. Johnson, Y. Fujii, Narrow-band Bragg reflectors in optical fibers. Opt. Lett. 3, 66–68 (1978)

    Article  ADS  Google Scholar 

  99. G. Meltz, W.W. Morey, W.H. Glenn, Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 14, 823–825 (1989)

    Article  ADS  Google Scholar 

  100. A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech, Boston, 1999)

    Google Scholar 

  101. R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH, Berlin, 2008)

    Google Scholar 

  102. P.St.J. Russell, J.L. Archambault, L. Reekie, Fiber gratings, Physics World, October 1993 issue, 41–46 (1993)

    Google Scholar 

  103. H. Patrick, S.L. Gilbert, Growth of Bragg gratings produced by continuous-wave ultraviolet light in optical fiber. Opt. Lett. 18, 1484–1486 (1993)

    Article  ADS  Google Scholar 

  104. Y. Liu, J.A.R. Williams, L. Zhang, I. Bennion, Abnormal spectral evolution of fibre Bragg gratings in hydrogenated fibres. Opt. Lett. 27, 586–588 (2002)

    Article  ADS  Google Scholar 

  105. A.G. Simpson, K. Kalli, K. Zhou, L. Zhang, I. Bennion, Formation of type IA fibre Bragg gratings in germanosilicate optical fibre. Electron. Lett. 40, 163–164 (2004)

    Article  Google Scholar 

  106. I. Riant, F. Haller, Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm. Influence of fiber tension: type IIA aging. J. Lightw. Technol. 15, 1464–1469 (1997)

    Article  ADS  Google Scholar 

  107. J.L. Archambault, L. Reekie, P.St.J. Russell, High reflectivity and narrow bandwidth fibre gratings written by single excimer pulse. Electron. Lett. 29, 28–29 (1993)

    Article  Google Scholar 

  108. T. Erdogan, Fiber grating spectra. J. Lightw. Technol. 15, 1277–1294 (1997)

    Article  ADS  Google Scholar 

  109. A. Othonos, K. Kalli, D. Pureur, A. Mugnier, Fibre Bragg gratings, in Wavelength Filters in Fibre Optics, ed. by H. Venghaus (Springer, Berlin, 2006), Chap. 5

    Google Scholar 

  110. www.gouldfo.com

  111. www.broptics.com

  112. www.aos-fiber.com

  113. www.teraxion.com

  114. www.redferncomponents.com

  115. M. Li, H. Li, Reflection equalization of the simultaneous dispersion and dispersion-slope compensator based on a phase-only sampled fiber Bragg grating. Opt. Express 16, 9821–9828 (2008)

    Article  ADS  Google Scholar 

  116. M. Li, T. Takahagi, K. Ogusu, H. Li, Y. Painchaud, A comprehensive study of the chromatic dispersion measurement of the multi-channel fiber Bragg grating based on an asymmetrical Sagnac loop interferometer. Opt. Commun. 281, 5165–5172 (2008)

    Article  ADS  Google Scholar 

  117. Y. Painchaud, A. Mailloux, H. Chotard, E. Pelletier, M. Guy, Multi-channel fiber Bragg gratings for dispersion and slope compensation, Opt. Fiber Commun. Conf. (OFC'02), Techn. Digest (Anaheim, CA, USA, 2002), paper ThAA5, pp. 581–582

    Google Scholar 

  118. A.M. Vengsarkar, P.J. Lemaire, J.B. Judkins, V. Bhatia, T. Erdogan, J.E. Sipe, Long-period fiber gratings as band-rejection filters. J. Lightw. Technol. 14, 58–65 (1996)

    Article  ADS  Google Scholar 

  119. K.O. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. Johnson, I. Skinner, Efficient mode-conversion in telecommunication fiber using externally written gratings. Electron. Lett. 26, 1270–1272 (1990)

    Article  Google Scholar 

  120. S.A. Vasiliev, E.M. Dianov, A.S. Kurkov, O.I. Medvedkov, V.N. Protopopov, Photoinduced in-fibre refractive-index gratings for core-cladding mode coupling. Quantum Electron. 27, 146–149 (1997)

    Article  ADS  Google Scholar 

  121. T. Erdogan, Cladding-mode resonances in short- and long-period fiber grating filters. J. Opt. Soc. Am. A 14, 1760–1773 (1997)

    Article  ADS  Google Scholar 

  122. S.W. James, R.P. Tatam, Optical fiber long-period grating sensors: characteristics and application. Meas. Sci. Technol. 14, R49–R61 (2003)

    Article  ADS  Google Scholar 

  123. P.-S. Jian, E. Smela, Modeling the performance of a long-period Bragg grating ambient-index sensor. Smart Mater. Struct. 15, 821–828 (2006)

    Article  ADS  Google Scholar 

  124. X. Fan, I.M. White, S.I. Shopova, H. Zhu, J.D. Suter, Y. Sun, Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 620, 8–26 (2008)

    Article  Google Scholar 

  125. C. Fabry, A. Pérot, Théorie et applications d'une nouvelle méthode de spectroscopie interférentielle. Ann. Chim. Phys. 16, 115–144 (1899)

    MATH  Google Scholar 

  126. T. Koonen, Fabry–Perot interferometer filters, Wavelength Filters in Fibre Optics, ed. by H. Venghaus (Springer, Berlin, 2006), Chap. 6

    Google Scholar 

  127. www.micronoptics.com

  128. F. Gires, P. Tournois, Interféromètre utilisable pour la compression d'impulsions lumineuses modulées en fréquence. C.R. Acad. Sci. Paris 258, 6112–6115 (1964)

    Google Scholar 

  129. M.K. Tilsch, R.B. Sargent, C.A. Hulse, Dielectric multilayer filters, Wavelength Filters in Fibre Optics, ed. by H. Venghaus (Springer, Berlin, 2006), Chap. 7

    Google Scholar 

  130. H.A. Macleod, Thin Film Optical Filters (Institute of Physics Publishing, Dirac House, Temple Back, Bristol, 2001)

    Book  Google Scholar 

  131. A. Thelen, Design of Interference Coatings (McGraw-Hill, New York, 1989)

    Google Scholar 

  132. A. Badeen, M. Briere, P. Hook, C. Montcalm, R. Rinfret, J. Schneider, B.T. Sullivan, Advanced optical coatings for telecom and spectroscopic applications, Conf. Opt. Systems Design, 01–05 Sept. 2008, Glasgow, UK/Advances in Opt. Thin Films III, ed. by N. Kaiser, M. Lequime, H.A. Macleod. Proc. SPIE, vol. 7101 (2008), paper 71010H

    Google Scholar 

  133. H. Takahashi, Temperature stability of thin-film narrow-bandpass filters produced by ion assisted deposition. Appl. Opt. 34, 667–675 (1995). Note that the author's last name is misspelled as Takashashi in the article; the correct spelling is Takahashi

    Article  ADS  Google Scholar 

  134. www.oxfordplasma.de

  135. www.auxora.com

  136. www.iridian.ca

  137. www.jdsu.com

  138. N. Kawakami, J. Kobayashi, M. Hikita, A. Kudo, F. Yamamoto, S. Imamura, Filter-embedded four-channel WDM module fabricated from fluorinated polyimide. J. Lightw. Technol. 24, 2388–2393 (2006)

    Article  ADS  Google Scholar 

  139. N. Keil, Z. Zhang, C. Zawadzki, C. Wagner, A. Scheibe, H. Ehlers, D. Ristau, J. Wang, W. Brinker, N. Grote, Ultra low-loss 1 ⨉ 2 multiplexer using thin-film filters on polymer integration platform. Electron. Lett. 45, 1167–1168 (2009)

    Article  Google Scholar 

  140. N. Keil, C. Zawadzki, Z. Zhang, J. Wang, N. Mettbach, N. Grote, M. Schell, Polymer PLC as an optical integration bench, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'11), Techn. Digest (Los Angeles, CA, USA, 2011), paper OWM1

    Google Scholar 

  141. R.M. Fortenberry, M.A. Scobey, D.J. Derickson, L.F. Stokes, P.C. Egerton, Chromatic dispersion of thin film filters, Opt. Fiber Commun. Conf. (OFC'2005), Techn. Digest (Anaheim, CA, USA, 2005), paper OFL2

    Google Scholar 

  142. www.oclaro.com

  143. K. Nosu, H. Ishio, K. Hashimoto, Multireflection optical multi/demultiplexer using interference filters. Electron. Lett. 15, 414–415 (1979)

    Article  Google Scholar 

  144. Y. Okabe, H. Sasaki, A simple wide wavelength division multi/demultiplexer consisting of optical elements, Opt. Fiber Commun. Conf. (OFC/IOOC'2002), Techn. Digest (Anaheim, CA, USA, 2002), pp. 322–323

    Google Scholar 

  145. B.E. Little, S.T. Chu, P.P. Absil, J.V. Hryniewicz, F.G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, M. Trakalo, Very high-order microring resonator filters for WDM applications. IEEE Photon. Technol. Lett. 16, 2263–2265 (2004)

    Article  ADS  Google Scholar 

  146. P.P. Absil, S.T. Chu, D. Gill, J.V. Hryniewicz, F. Johnson, O. King, B.E. Little, F. Seiferth, V. Van, Very high order integrated optical filters, Opt. Fiber Commun. Conf. (OFC'2004), Techn. Digest (Los Angeles, CA, USA, 2004), paper TuL3

    Google Scholar 

  147. G.L. Bona, F. Horst, R. Germann, B.J. Offrein, D. Wiesmann, Tunable dispersion compensator realized in high-refractive-index-contrast SiON technology, Proc. 28th Europ. Conf. Opt. Commun. (ECOC 2002), Copenhagen, Denmark (2002), vol. 2, paper 4.2.1

    Google Scholar 

  148. M. Ferrera, L. Razzari, D. Duchesse, R. Morandotti, Z. Yang, M. Liscidini, J.E. Sipe, S. Chu, B.E. Little, D.J. Moss, Ultra-low power frequency conversion in two-photon-absorption free micro ring resonator, Proc. Progress in Electromagn. Res. Symposium (PIERS) (Beijing, China, 2009), pp. 1291–1294

    Google Scholar 

  149. P.P. Absil, J.V. Hryniewicz, B.E. Little, P.S. Cho, R.A. Wilson, L.G. Joneckis, P.-T. Ho, Wavelength conversion in GaAs micro-ring resonators. Opt. Lett. 25, 554–556 (2000)

    Article  ADS  Google Scholar 

  150. M. Hamacher, U. Troppenz, H. Heidrich, D.G. Rabus, Active ring resonators based on InGaAsP/InP. Proc. SPIE, vol. 4947 (2003), pp. 212–222

    Article  Google Scholar 

  151. V. Van, T.A. Ibrahim, K. Ritter, P.P. Absil, F.G. Johnson, R. Grover, J. Goldhar, P.-T. Ho, All-optical nonlinear switching in GaAs-AlGaAs microring resonators. IEEE Photon. Technol. Lett. 14, 74–76 (2002)

    Article  ADS  Google Scholar 

  152. V.R. Almeida, C.A. Barrios, R.R. Panepucci, M. Lipson, All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004)

    Article  ADS  Google Scholar 

  153. Q. Xu, B. Schmidt, J. Shakya, M. Lipson, Cascaded silicon micro-ring modulators for WDM optical interconnection. Opt. Express 14, 9430–9435 (2006)

    ADS  Google Scholar 

  154. A. Chen, H. Sun, A. Pyayt, X. Zhang, J. Luo, A. Jen, P.A. Sullivan, S. Elangovan, L.R. Dalton, R. Dinu, D. Jin, D. Huang, Chromophore-containing polymers for trace explosive sensors. J. Phys. Chem. C 112, 8072–8078 (2008)

    Article  Google Scholar 

  155. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. Opt. Express 15, 7610–7615 (2007)

    Article  ADS  Google Scholar 

  156. A. Yalçin, K.C. Popat, J.C. Aldridge, T.A. Desai, J. Hryniewicz, N. Chbouki, B.E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M.S. Ünlü, B.B. Goldberg, Optical sensing of biomolecules using microring resonators. IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006)

    Article  Google Scholar 

  157. G. Grover, P. Absil, V. Van, J. Hryniewicz, B.E. Little, O. King, L. Calhoun, F. Johnson, P. Ho, Vertically coupled GaInAsP-InP microring resonators. Opt. Lett. 26, 506–508 (2001)

    Article  ADS  Google Scholar 

  158. D.G. Rabus, Integrated Ring Resonators (Springer, Berlin, 2007)

    Google Scholar 

  159. W.W. Lui, T. Hirono, K. Yokohama, W.-P. Huang, Polarization rotation in semiconductor bending waveguides: A coupled-mode theory formulation. J. Lightw. Technol. 16, 929–936 (1998)

    Article  ADS  Google Scholar 

  160. F. Morichetti, A. Melloni, M. Martinelli, Effects of polarization rotation in optical ring-resonator-based devices. J. Lightw. Technol. 24, 573–585 (2006)

    Article  ADS  Google Scholar 

  161. C. van Dam, L.H. Spiekman, F.P.G.M. van Ham, G.H. Groen, J.J.G.M. van der Tol, I. Moerman, W.W. Pascher, M. Hamacher, H. Heidrich, C.M. Weinert, M.K. Smit, Novel compact polarization converters based on ultra short bends. IEEE Photon. Technol. Lett. 8, 1346–1348 (1996)

    Article  Google Scholar 

  162. F. Morichetti, A. Melloni, Polarization converters based on ring-resonator phase-shifters. IEEE Photon. Technol. Lett. 18, 923–925 (2006)

    Article  ADS  Google Scholar 

  163. D.H. Geuzebroek, A. Driessen, Ring-resonator-based wavelength filters, in Wavelength Filters in Fibre Optics, ed. by H. Venghaus (Springer, Berlin, 2006), Chap. 8

    Google Scholar 

  164. B. Little, S. Chu, Wei Chen, J. Hryniewicz, D. Gill, O. King, F. Johnson, R. Davidson, K. Donovan, Wenlu Chen, S. Grubb, Tunable bandwidth microring resonator filters, Proc. 34th Europ. Conf. Opt. Commun. (ECOC 2008), Brussels, Belgium (2008), vol. 4, paper Th.2.C.2, pp. 81–82

    Google Scholar 

  165. Z. Wang, W. Chen, Y.J. Chen, Unit cell design of crossbar switch matrix using micro-ring resonators, Proc. 30th Europ. Conf. Opt. Commun. (ECOC 2004), Stockholm, Sweden (2004), vol. 3, pp. 462–463

    Google Scholar 

  166. A. Melloni, M. Martinelli, Synthesis of direct-coupled-resonators bandpass filters for WDM systems. J. Lightw. Technol. 20, 296–303 (2002)

    Article  ADS  Google Scholar 

  167. Wei Chen, Wenlu Chen, Y.J. Chen, A characteristic matrix approach for analyzing resonant ring lattice devices. IEEE Photon. Technol. Lett. 16, 458–460 (2004)

    Article  ADS  Google Scholar 

  168. B.E. Little, H.A. Haus, J.S. Foresi, L.C. Kimmerling, E.P. Ippen, D.J. Ippen, Wavelength switching and routing using absorption and resonance. IEEE Photon. Technol. Lett. 10, 816–818 (1998)

    Article  ADS  Google Scholar 

  169. H. Shen, J.-P. Chen, X.-W. Li, Y.-P. Wang, Group delay and dispersion analysis of compound high order microring resonator all-pass filters. Opt. Commun. 262, 200–205 (2006)

    Article  ADS  Google Scholar 

  170. B.E. Little, A VLSI photonics platform, Opt. Fiber Commun. Conf. (OFC'2003), Techn. Digest (Atlanta, GA, USA, 2003), vol. 2, paper ThD1, pp. 444–445

    Google Scholar 

  171. Y. Yanagase, S. Suzuki, Y. Kokubun, S.T. Chu, Box-like filter response by vertically series coupled microring resonator filter, Proc. 27th Europ. Conf. Opt. Commun. (ECOC 2001), Amsterdam, The Netherlands (2001), vol. 4, pp. 634–635

    Google Scholar 

  172. L.C. Kimerling, L. Dal Negro, S. Saini, Y. Yi, D. Ahn, S. Akiyama, D. Cannon, J. Liu, J.G. Sandland, D. Sparacin, J. Michel, K. Wada, M.R. Watts, Monolithic silicon microphotonics, in Silicon Photonics, ed. by L. Pavesi, D.J. Lockwood (Springer, Berlin, 2004), pp. 89–120

    Chapter  Google Scholar 

  173. S. Cao, J. Chen, J.N. Damask, C.R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, P. Xie, Interleaver technology: Comparisons and applications requirements. J. Lightw. Technol. 22, 281–289 (2004)

    Article  ADS  Google Scholar 

  174. H. Arai, H. Nonen, K. Ohira, T. Chiba, PLC wavelength splitter for a dense WDM transmission system. Hitachi Cable Rev. 21, 11–16 (2002)

    Google Scholar 

  175. B. Dingel, M. Izutsu, Multifunctional optical filter with a Michelson-Gires–Tournois interferometer for wavelength-division-multiplexed system applications. Opt. Lett. 23, 1099–1101 (1998)

    Article  ADS  Google Scholar 

  176. X. Shu, K. Sugden, I. Bennion, Flattop multi-passband filter based on all-fiber Michelson-Gires–Tournois interferometer, Proc. 30th Europ. Conf. Opt. Commun. (ECOC 2004), Stockholm, Sweden (2004), paper Tu1.3.1

    Google Scholar 

  177. M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, Y. Yoshikuni, 200-GHz FSR periodic multi/demultiplexer with flattened transmission and rejection band by using a Mach–Zehnder interferometer with a ring resonator. IEEE Photon. Technol. Lett. 12, 1174–1176 (2000)

    Article  ADS  Google Scholar 

  178. J. Song, Q. Fang, S.H. Tao, M.B. Yu, G.Q. Lo, L. Kwong, Proposed silicon wire interleaver structure. Opt. Express 16, 7849–7859 (2008)

    Article  ADS  Google Scholar 

  179. J. Song, Q. Fang, S.H. Tao, M.B. Yu, G.Q. Lo, D.L. Kwong, Passive ring-assisted Mach–Zehnder interleaver on silicon-on-insulator. Opt. Express 16, 8359–8365 (2008)

    Article  ADS  Google Scholar 

  180. D. Dai, S. He, Novel ultrasmall Si-nanowire-based arrayed-waveguide grating interleaver with spirals. Opt. Commun. 281, 3471–3475 (2008)

    Article  ADS  Google Scholar 

  181. R.M. de Ridder, C.G.H. Roeloffzen, Interleavers, in Wavelength Filters in Fibre Optics, ed. by H. Venghaus (Springer, Berlin, 2006), Chap. 9

    Google Scholar 

  182. http://www.optoplex.com

  183. http://www.hitachi-cable.co.jp

  184. D.A. Smith, J.E. Baran, J.J. Johnson, K.-W. Cheung, Integrated-optic acoustically-tunable filters for WDM networks. IEEE J. Sel. Areas Commun. 8, 1151–1159 (1990)

    Article  Google Scholar 

  185. S.F. Su, R. Olshansky, G. Joyce, D.A. Smith, J.E. Baran, Gain equalization in multiwavelength lightwave systems using acoustooptic tunable filters. IEEE Photon. Technol. Lett. 4, 269 (1992)

    Article  ADS  Google Scholar 

  186. J.L. Jackel, M.S. Goodman, J.E. Baran, W.J. Tomlinson, G.-K. Chang, M.Z. Iqbal, G.H. Song, K. Bala, C.A. Brackett, D.A. Smith, R.S. Chakravarthy, R.H. Hobbs, D.J. Fritz, R.W. Ade, K.M. Kissa, Acousto-optic tunable filters (AOTF's) for multiwavelength optical cross-conncects: crosstalk considerations. J. Lightw. Technol. 14, 1056–1066 (1996)

    Article  ADS  Google Scholar 

  187. M.K. Smit, T. Koonen, H. Hermann, W. Sohler, Wavelength-selective devices, in Fibre Optic Communication Devices, ed. by N. Grote, H. Venghaus (Springer, Berlin, 2001), Chap. 7

    Google Scholar 

  188. http://www.goochandhousego.com/products/prod/16

  189. J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, D. Van Thourhout, Planar concave grating demultiplexer with high reflective Bragg reflector facets. IEEE Photon. Technol. Lett. 20, 309–311 (2008)

    Article  ADS  Google Scholar 

  190. W. Bogaerts, S.K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010)

    Article  Google Scholar 

  191. I. Giuntoni, P. Balladares, R. Steingrüber, J. Bruns, K. Petermann, WDM multi-channel filter based on sampled gratings in silicon-on-insulator, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'11), Techn. Digest (Los Angeles, CA, USA, 2011), paper OThV3

    Google Scholar 

  192. F. Horst, W.M.J. Green, B.J. Offrein, Y.A. Vlasov, Silicon-on-insulator echelle grating WDM demultiplexers with two stigmatic points. IEEE Photon. Technol. Lett. 21, 1743–1745 (2009)

    Article  ADS  Google Scholar 

  193. R. März, Integrated Optics – Design and Modeling (Artech, Boston, 1994)

    Google Scholar 

  194. www.luxtera.com

  195. J.-M. An, Y.-D. Wu, J. Li, J.-G. Li, H.-J. Wang, J.-Y. Li, X.-W. Hu, Fabrication of triplexers based on flattop SOI AWG. Chin. Phys. Lett. 25, 1717–1719 (2008)

    Article  ADS  Google Scholar 

  196. K. Sasaki, F. Ohne, A. Motegi, T. Baba, Arrayed waveguide grating of 70 ⨉ 60 µm2 size based on Si photonic wire waveguides. Electron. Lett. 41, 801–802 (2005)

    Article  Google Scholar 

  197. P. Cheben, J.H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, D.-X. Xu, A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides. Opt. Express 15, 2299–2306 (2007)

    Article  ADS  Google Scholar 

  198. L. Wosinski, Nanophotonic devices based on silicon-on-insulator nanowire waveguides, Proc. 8th Int. Conf. Transparent Opt. Netw. (ICTON 2006), Nottingham, UK (2006), paper We.C1.2

    Google Scholar 

  199. D. Hirahara, K. Sasaki, T. Ishii, T. Baba, Large birefringence in SOI layer and its application to polarization-insensitive AWG, 5th IEEE Conf. Group IV Photonics, Sorrento, Italy, 2008, paper FD3

    Google Scholar 

  200. Q. Fang, T.-Y. Liow, J.F. Song, K.W. Ang, Y.T. Phang, M.B. Yu, G.Q. Lo, D.L. Kwong, Monolithic silicon photonic DWDM receiver for Terabit data communications, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'10), Techn. Digest (San Diego, CA, USA, 2010), paper OMI4

    Google Scholar 

  201. F. Xia, M. Rooks, L. Sekaric, Y. Vlasov, Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Opt. Express 15, 11934–11941 (2007)

    Article  ADS  Google Scholar 

  202. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A.V. Krishnamoorthy, M. Asghari, Low power and compact reconfigurable multiplexing devices based on silicon microring resonators. Opt. Express 18, 9852–9858 (2010)

    Article  ADS  Google Scholar 

  203. H. Shen, M.H. Khan, L. Fan, L. Zhao, Y. Xuan, J. Ouyang, L.T. Varghese, M. Qi, Eight-channel reconfigurable microring filters with tunable frequency, extinction ratio and bandwidth. Opt. Express 18, 18067–18076 (2010)

    Article  Google Scholar 

  204. X. Zheng, I. Shibin, G. Li, T. Pinguet, A. Mekis, J. Yao, H. Thacker, Y. Luo, J. Costa, K. Raj, J.E. Cunningham, A.V. Krishnamoorthy, A tunable 1 ⨉ 4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects. Opt. Express 18, 5151–5160 (2010)

    Article  ADS  Google Scholar 

  205. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J.-I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S.-I. Itabashi, H. Morita, Microphotonics devices based on silicon microfabrication technology. IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005)

    Article  Google Scholar 

  206. D.W. Kim, A. Barkai, R. Jones, N. Elek, H. Nguyen, A. Liu, Silicon-on-insulator eight-channel optical multiplexer based on a cascade of asymmetric Mach–Zehnder interferometers. Opt. Lett. 33, 530–532 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Venghaus Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Venghaus, H. (2012). Wavelength Filters. In: Venghaus, H., Grote, N. (eds) Fibre Optic Communication. Springer Series in Optical Sciences, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20517-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20517-0_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20516-3

  • Online ISBN: 978-3-642-20517-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics