Skip to main content

Linear Semiconductor Optical Amplifiers

  • Chapter
  • First Online:
Fibre Optic Communication

Abstract

The chapter reviews properties and applications of linear semiconductor optical amplifiers (SOA). Section 12.1 covers SOA basics, including working principles, material systems, structures and their growth. Booster or inline amplifiers as well as low-noise preamplifiers are classified. Section 12.2 discusses the influence of parameters like gain, noise figure, gain saturation, gain and phase dynamics, and alpha-factor. In Sect. 12.3, the application of a linear SOA as a reach extender in future access networks is addressed. The input power dynamic range is introduced, and measurements for on-off keying and phase shift keying signals are shown. Section 12.4 presents the state of the art for commercially available SOA and includes a treatment of reflective SOAs (RSOA) as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.R. Zimmerman, L.H. Spiekman, Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications. J. Lightw. Technol. 22, 63–70 (2004)

    Article  ADS  Google Scholar 

  2. R. Bonk, R. Brenot, C. Meuer, T. Vallaitis, A. Tussupov, J. C. Rode, S. Sygletos, P. Vorreau, F. Lelarge, G.H. Duan, H.-G. Krimmel, Th. Pfeiffer, D. Bimberg, W. Freude, J. Leuthold, 1.3/ 1.5 µm QD-SOAs for WDM/TDM GPON with extended reach and large upstream/downstream dynamic range, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'09), Techn. Digest (San Diego, CA, USA, 2009), paper OWQ1

    Google Scholar 

  3. L.A. Coldren, S.C. Nicholes, L. Johansson, S. Ristic, R.S. Guzzon, E.J. Norberg, U. Krishnamachari, High performance InP-based photonic ICs – A tutorial. J. Lightw. Technol. 29, 554–570 (2011)

    Article  ADS  Google Scholar 

  4. K. Morito, High-power semiconductor optical amplifier, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'09), Techn. Digest (San Diego, CA, USA, 2009), paper OWQ4 (tutorial)

    Google Scholar 

  5. C. Michie, A.E. Kelly, J. McGeough, I. Armstrong, I. Andonovic, C. Tombling, Polarization-insensitive SOAs using strained bulk active regions. J. Lightw. Technol. 24, 3920–3927 (2006)

    Article  ADS  Google Scholar 

  6. M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, Y. Nakata, Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers. Phys. Rev. B 69, 235332 (2004)

    Article  ADS  Google Scholar 

  7. R. Brenot, F. Lelarge, O. Legouezigou, F. Pommereau, F. Poingt, L. Legouezigou, E. Derouin, O. Drisse, B. Rousseau, F. Martin, G.H. Duan, Quantum dots semiconductor optical amplifier with a -3 dB bandwidth of up to 120 nm in semi-cooled operation, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'08), Techn. Digest (San Diego, CA, USA, 2008), paper OTuC1

    Google Scholar 

  8. K. Morito, M. Ekawa, T. Watanabe, Y. Kotaki, High-output-power polarization-insensitive semiconductor optical amplifier. J. Lightw. Technol. 21, 176–181 (2003)

    Article  ADS  Google Scholar 

  9. M.G.A. Bernard, G. Duraffourg, Laser conditions in semiconductors. phys. stat. sol. (b) 1, 699–703 (1961)

    Article  ADS  Google Scholar 

  10. N. Nakamura, S. Tsuji, Single-mode semiconductor injection lasers for optical fiber communications. IEEE J. Quantum Electron. QE-17, 994 (1981)

    Article  ADS  Google Scholar 

  11. Z.I. Alferov, Nobel Lecture: The double heterostructure concept and its applications in physics, electronics, and technology. Rev. Mod. Phys. 73, 767–782 (2001)

    Article  ADS  Google Scholar 

  12. G. Lasher, F. Stern, Spontaneous and stimulated recombination radiation in semiconductors. Phys. Rev. A 133, 553–563 (1964)

    ADS  Google Scholar 

  13. N.K. Dutta, Q. Wang, Semiconductor Optical Amplifiers (World Scientific Publishing, Singapore, 2006)

    Book  Google Scholar 

  14. Quantum Well Lasers, ed. by P.S. Zory, Jr. (Academic Press, Boston, 1993)

    Google Scholar 

  15. J. Leuthold, Advanced indium-phosphide waveguide Mach–Zehnder interferometer all-optical switches and wavelength converters, Series in Quantum Electronics, vol. 12 (Hartung-Gorre, Konstanz, 1999)

    Google Scholar 

  16. J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, Ch. Zellweger, Material gain of bulk 1.55 µm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model. J. Appl. Phys. 87, 618–620 (2000)

    Article  ADS  Google Scholar 

  17. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1999)

    Google Scholar 

  18. M.A. Newkirk, B.I. Miller, U. Koren, M.G. Young, M. Chien, R.M. Jopson, C.A. Burrus, 1.5 µm multiquantum-well semiconductor optical amplifier with tensile and compressively strained wells for polarization-independent gain. IEEE Photon. Technol. Lett. 4, 406–408 (1993)

    Article  ADS  Google Scholar 

  19. K. Magari, M. Okamoto, Y. Suzuki, K. Sato, Y. Noguchi, O. Mikami, Polarization-insensitive optical amplifier with tensile-strained-barrier MQW structure. IEEE J. Quantum Electron. 30, 695–702 (1994)

    Article  ADS  Google Scholar 

  20. D. Leclerc, P. Brosson, F. Pommereau, R. Ngo, P. Doussière, F. Mallécot, P. Gavignet, I. Wamsler, G. Laube, W. Hunziker, W. Vogt, H. Melchior, High-performance semiconductor optical amplifier array for self-aligned packaging using Si V-groove flip-chip technique. IEEE Photon. Technol. Lett. 7, 476–478 (1995)

    Article  ADS  Google Scholar 

  21. C.-E. Zah, R. Bhat, B.N. Pathak, F. Favire, W. Lin, M.C. Wang, N.C. Andreadakis, D.M. Hwang, M.A. Koza, T.-P. Lee, Z. Wang, D. Darby, D. Flanders, J.J. Hsieh, High-performance uncooled 1.3-µm Al x Ga y In\({}_{{1-x-y}}\)As/InP strained-layer quantum-well lasers for subscriber loop applications. IEEE J. Quantum Electron. 30, 511–523 (1994)

    Article  ADS  Google Scholar 

  22. M. Yamada, T. Anan, K. Tokutome, S. Sugou, High-temperature characteristics of 1.3-µm InAsP-InAlGaAs ridge waveguide lasers. IEEE Photon. Technol. Lett. 11, 164–166 (1999)

    Article  ADS  Google Scholar 

  23. P. Koonath, S. Kim, W.-J. Cho, A. Gopinath, Polarization-insensitive optical amplifiers in AlInGaAs. IEEE Photon. Technol. Lett. 13, 779–781 (2001)

    Article  ADS  Google Scholar 

  24. H. Ma, X. Yi, S. Chen, 1.55 µm AlGaInAs/InP polarization-insensitive optical amplifier with tensile strained wells grown by MOCVD. Opt. and Quantum Electron. 35, 1107–1112 (2003)

    Article  Google Scholar 

  25. J. Hashimoto, K. Koyama, T. Katsuyama, Y. Tsuji, K. Fujii, K. Yamazaki, A. Ishida, 1.3 µm GaInNAs bandgap difference confinement semiconductor optical amplifiers. Jpn. J. Appl. Phys. 45, 1635–1639 (2006)

    Article  ADS  Google Scholar 

  26. S. Tanaka, A. Uetake, S. Yamazaki, M. Ekawa, K. Morito, Polarization-insensitive GaInNAs–GaInAs MQW-SOA with low noise figure and small gain tilt over 90-nm bandwidth (1510–1600 nm). IEEE Photon. Technol. Lett. 20, 1311–1313 (2008)

    Article  ADS  Google Scholar 

  27. S.J. Sweeney, patent WO 2010/149978 A1

    Google Scholar 

  28. S.J. Sweeney, Bismide-alloys for higher efficiency infrared semiconductor lasers, Proc. 22nd IEEE Int. Semicond. Laser Conf. (ISLC2010), Conf. Digest (Kyoto, Japan, 2010), paper P24

    Google Scholar 

  29. Y. Tominaga, K. Oe, M. Yoshimoto, Low temperature dependence of oscillation wavelength in GaAs\({}_{{1-x}}\)Bi\({}_{{x}}\) laser by photo-pumping. Appl. Phys. Express 3, 062201 (2010)

    Article  ADS  Google Scholar 

  30. M. Yoshimoto, W. Huang, G. Feng, K. Oe, New semiconductor alloy GaNAsBi with temperature-insensitive bandgap. phys. stat. sol. (b) 243, 1421–1425 (2006)

    Article  ADS  Google Scholar 

  31. J.P. Reithmaier, G. Eisenstein, A. Forchel, InAs/InP quantum-dash lasers and amplifiers. Proc. IEEE 95, 1779–1790 (2007)

    Article  Google Scholar 

  32. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O.L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 µm. IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007)

    Article  Google Scholar 

  33. T. Akiyama, M. Sugawara, Y. Arakawa, Quantum-dot semiconductor optical amplifiers. Proc. IEEE 95, 1757–1766 (2007)

    Article  Google Scholar 

  34. A.R. Kovsh, N.A. Maleev, A.E. Zhukov. S.S. Mikhrin, A.P. Vasil'ev, E.A. Semenova, Y.M. Shernyakov, M.V. Maximov, D.A. Livshits, V.M. Ustinov. N.N. Ledentsov, D. Bimberg, Z.I. Alferov, InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain. J. Cryst. Growth 251, 729–736 (2003)

    Article  ADS  Google Scholar 

  35. D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Laemmlin, N.N. Ledentsov, A.R. Kovsh, High speed nanophotonic devices based on quantum dots. phys. stat. sol. (a) 203, 3523–3532 (2006)

    Article  ADS  Google Scholar 

  36. T. Kita, O. Wada, H. Ebe, Y. Nakata, M. Sugawara, Polarization-independent photoluminescence from columnar InAs/GaAs self-assembled quantum dots. Jpn. J. Appl. Phys. 41, L1143–L1145 (2002)

    Article  ADS  Google Scholar 

  37. N. Yasuoka, K. Kawaguchi, H. Ebe, T. Akiyama, M. Ekawa, K. Morito, M. Sugawara, Y. Arakawa, 1.55-µm polarization-insensitive quantum dot semiconductor optical amplifier, Proc. 34th Europ. Conf. Opt. Commun. (ECOC'08), Brussels, Belgium (2008), paper Th.1.C.1

    Google Scholar 

  38. N. Yasuoka, K. Kawaguchi, H. Ebe, T. Akiyama, M. Ekawa, K. Morito, M. Sugawara, Y. Arakawa, Quantum-dot semiconductor optical amplifiers with polarization-independent gains in 1.5-µm wavelength bands. IEEE Photon. Technol. Lett. 20, 1908–1910 (2008)

    Article  ADS  Google Scholar 

  39. D. Litvinov, H. Blank, D. Schneider, D. Gerthsen, T. Vallaitis, J. Leuthold, T. Passow, A. Grau, H. Kalt, C. Klingshirn, M. Hetterich, Influence of InGaAs cap layers with different In concentration on the properties of InGaAs quantum dots. J. Appl. Phys. 103, 083532 (2008)

    Article  ADS  Google Scholar 

  40. G.P. Agrawal, Fiber-Optic Communication Systems (Wiley, New York, 2002)

    Book  Google Scholar 

  41. T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, J. Leuthold, Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier. Opt. Express 16, 170–178 (2008)

    Article  ADS  Google Scholar 

  42. H. Wang, E. Aw, M. Xia, M. Thompson, R. Penty, I. White, A. Kovsh, Temperature independent optical amplification in uncooled quantum dot optical amplifiers, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'08), Techn. Digest (San Diego, CA, USA, 2008), paper OTuC2

    Google Scholar 

  43. R. Brenot, M.D. Manzanedo, J.-G. Provost, O. Legouezigou, F. Pommereau, F. Poingt, L. Legouezigou, E. Derouin, O. Drisse, B. Rousseau, F. Martin, F. Lelarge, G.H. Duan, Chirp reduction in quantum dot-like semiconductor optical amplifiers, Proc. 33rd Europ. Conf. Opt. Commun. ('07), Berlin, Germany (2007), paper We08.6.6

    Google Scholar 

  44. M. Spyropoulou, S. Sygletos, I. Tomkos, Simulation of multi-wavelength regeneration based on QD semiconductor optical amplifiers. IEEE Photon. Technol. Lett. 19, 1577–1579 (2007)

    Article  ADS  Google Scholar 

  45. S. Sygletos, M. Spyropoulou, P. Vorreau, R. Bonk, I. Tomkos, W. Freude, J. Leuthold, Multi-wavelength regenerative amplification based on quantum-dot semiconductor optical amplifiers, Proc. 9th Intern. Conf. on Transparent Optical Netw. (ICTON'07) (Rome, Italy, 2007), paper We.D2.5

    Google Scholar 

  46. G.P. Agrawal, N.K. Dutta, Semiconductor Lasers, 2nd edn. (Van Nostrand Reinhold, New York, 1993)

    Google Scholar 

  47. Photonic integrated circuits – A technology and applications primer, Infinera, white paper (2005). www.infinera.com

  48. R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, C. Joyner, J. Rossi, R. Schneider, M. Ziari, H.-S. Tsai, J. Bostak, M. Kaufmann, S. Pennypacker, T. Butrie, M. Reffle, D. Mehuys, M. Mitchell, A. Nilsson, S. Grubb, F. Kish, D. Welch, Large-scale photonic integrated circuits for long-haul transmission and switching. J. Opt. Netw. 6, 102–111 (2007)

    Article  Google Scholar 

  49. M.J. Connelly, Semiconductor Optical Amplifiers (Kluwer Academic, Boston, 2002)

    Google Scholar 

  50. T. Kremp, Split-step wavelet collocation methods for linear and nonlinear optical wave propagation, PhD thesis, University of Karlsruhe (TH) (2002)

    Google Scholar 

  51. J. Wang, Pattern effect mitigation techniques for all-optical wavelength converters based on semiconductor optical amplifiers, PhD thesis, University of Karlsruhe (TH) (2008)

    Google Scholar 

  52. H.A. Kramers, Diffusion of light by atoms, Atti. Congr. Internat. Fisici 2, 545–57 (1927)

    Google Scholar 

  53. R. de L. Kronig, On the theory of the dispersion of X-rays. J. Opt. Soc. Am. 12, 547–557 (1926)

    Article  ADS  Google Scholar 

  54. D.C. Hutchings, M. Sheik-Bahae, D.J. Hagan, E.W. van Stryland, Kramers-Krönig relations in nonlinear optics. Opt. Quantum Electron. 24, 1–30 (1992)

    Article  Google Scholar 

  55. C.H. Henry, Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. QE-18, 259–264 (1982)

    Article  ADS  Google Scholar 

  56. L. Occhi, L. Schares, G. Guekos, Phase modeling based on the ɑ-factor in bulk semiconductor optical amplifiers. IEEE J. Sel. Top. Quantum Electron. 9, 788–797 (2003)

    Article  Google Scholar 

  57. G. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic Press, New York, 2001)

    Google Scholar 

  58. H.A. Haus, Noise figure definition valid from RF to optical frequencies. IEEE J. Sel. Top. Quantum Electron. 6, 240–247 (2000)

    Article  Google Scholar 

  59. D.M. Baney, P. Gallion, R.S. Tucker, Theory and measurement techniques for the noise figure of optical amplifiers. Optical Fiber Technol. 6, 122–154 (2000)

    Article  ADS  Google Scholar 

  60. E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994)

    Google Scholar 

  61. N.A. Olsson, Lightwave systems with optical amplifiers. J. Lightwave Technol. 7, 1071–1082 (1989)

    Article  ADS  Google Scholar 

  62. A. Borghesani, N. Fensom, A. Scott, G. Crow, L.M. Johnston, J.A. King, L.J. Rivers, S. Cole, S.D. Perrin, D. Scrase, G. Bonfrate, A.D. Ellis, I.F. Lealman, G. Crouzel, L.H.K. Chun, A. Lupu, E. Mahe, P. Maigne, High saturation power (> 16.5 dBm) and low noise figure (< 6 dB) semiconductor optical amplifier for C-band operation, Opt. Fiber Commun. Conf. (OFC'03), Techn. Digest (Atlanta, GA, USA, 2003), paper ThO1

    Google Scholar 

  63. K. Morito, S. Tanaka, Record high saturation power (+22 dBm) and low noise figure (5.7 dB) polarization-insensitive SOA module. IEEE Photon. Technol. Lett. 17, 1298–1300 (2005)

    Article  ADS  Google Scholar 

  64. G.P. Agrawal, N.A. Olsson, Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE J. Quantum Electron. 25, 2297–2306 (1989)

    Article  ADS  Google Scholar 

  65. R. Olshansky, C.B. Su, J. Manning, W. Powazinik, Measurement of radiative and nonradiative recombination rates in InGaAsP and AlGaAs light sources. IEEE J. Quantum Electron. QE-20, 838–854 (1984)

    Article  ADS  Google Scholar 

  66. J. Leuthold, D.M. Marom, S. Cabot, J.J. Jaques, R. Ryf, C.R. Giles, All-optical wavelength conversion using a pulse reformatting optical filter. J. Lightw. Technol. 22, 186–192 (2004)

    Article  ADS  Google Scholar 

  67. J. Leuthold, C.H. Joyner, B. Mikkelsen, G. Raybon, J.L. Pleumeekers, B.I. Miller, K. Dreyer, C.A. Burrus, 100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration. Electron. Lett. 36, 1129–1130 (2000)

    Article  Google Scholar 

  68. J. Leuthold, L. Moller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, A. Griffin, 160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties. Electron. Lett. 40, 554–555 (2004)

    Article  Google Scholar 

  69. J. Leuthold, G. Raybon, Y. Su, R. Essiambre, S. Cabot, J. Jaques, M. Kauer, 40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1 000 000 km. Electron. Lett. 38, 890–892 (2002)

    Article  Google Scholar 

  70. H. Chen, G. Zhu, Q. Wang, J. Jaques, J. Leuthold, A.B. Piccirilli, N.K. Dutta, All-optical logic XOR using differential scheme and Mach–Zehnder interferometer. Electron. Lett. 38, 1271–1273 (2002)

    Article  Google Scholar 

  71. J.P. Sokoloff, P.R. Prucnal, I. Glesk, M. Kane, A terahertz optical asymmetric demultiplexer (TOAD). IEEE Photon. Technol. Lett. 5, 787–790 (1993)

    Article  ADS  Google Scholar 

  72. A. Bjarklev, Optical Fiber Amplifiers: Design and System Applications (Artech, Norwood, 1993)

    Google Scholar 

  73. L. Occhi, Semiconductor optical amplifiers made of ridge waveguide bulk InGaAsP/InP: Experimental characterization and numerical modeling of gain, phase and noise, PhD thesis, ETH Zürich (2002)

    Google Scholar 

  74. R.J. Manning, D.A.O. Davies, J.K. Lucek, Recovery rates in semiconductor laser amplifiers: Optical and electrical bias dependencies. Electron. Lett. 30, 1233–1235 (1994)

    Article  Google Scholar 

  75. F. Girardin, G. Guekos, A. Houbavlis, Gain recovery of bulk semiconductor optical amplifiers. IEEE Photon. Technol. Lett. 10, 784–786 (1998)

    Article  ADS  Google Scholar 

  76. J. Slovak, C. Bornholdt, U. Busolt, G. Bramann, Ch. Schmidt, H. Ehlers, H.P. Nolting, B. Sartorius, Optically clocked ultra long SOAs: A novel technique for high speed 3R signal regeneration, Opt. Fiber Commun. Conf. (OFC'04), Techn. Digest (Los Angeles, CA, USA, 2004), paper WD4

    Google Scholar 

  77. R. Gutiérrez-Castrejón, L. Schares, L. Occhi, G. Guekos, Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length. IEEE J. Quantum Electron. 36, 1476–1484 (2000)

    Article  ADS  Google Scholar 

  78. A. Kapoor, E.K. Sharma, W. Freude, J. Leuthold, Investigation of the saturation characteristics of InGaAsP-InP bulk SOA. Proc. SPIE, vol. 7597 (2010), 75971I

    Article  ADS  Google Scholar 

  79. M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, Y. Nakata, Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers. Phy. Rev. B 69, 235332 (2004)

    Article  ADS  Google Scholar 

  80. J. Mørk, M.L. Nielsen, T.W. Berg, The dynamics of semiconductor optical amplifiers, modeling and applications. Opt. Photon. News 14, 43–48 (2003)

    Article  Google Scholar 

  81. A. Mecozzi, J. Mørk, Saturation induced by picosecond pulses in semiconductor optical amplifiers. J. Opt. Soc. Am. B 14, 761–770 (1997)

    Article  ADS  Google Scholar 

  82. J. Mørk, A. Mecozzi, Theory of the ultrafast optical response of active semiconductor waveguides. J. Opt. Soc. Am. B 13, 1803–1816 (1996)

    Article  ADS  Google Scholar 

  83. A. Mecozzi, J. Mørk, Saturation effects in nondegenerated four-wave mixing between short optical pulses in semiconductor laser amplifiers. IEEE J. Sel. Top. Quantum Electron. 3, 1190–1207 (1997)

    Article  Google Scholar 

  84. A.V. Uskov, E.P. O'Reilly, M. Laemmlin, N.N. Ledentsov, D. Bimberg, On gain saturation in quantum dot semiconductor optical amplifiers. Opt. Commun. 248, 211–219 (2005)

    Article  ADS  Google Scholar 

  85. J. Wang, A. Maitra, C.G. Poulton, W. Freude, J. Leuthold, Temporal dynamics of the alpha factor in semiconductor optical amplifiers. J. Lightw. Technol. 25, 891–900 (2007)

    Article  ADS  Google Scholar 

  86. R. Bonk, T. Vallaitis, J. Guetlein, D. Hillerkuss, J. Li, W. Freude, J. Leuthold, Quantum dot SOA dynamic range improvement for phase modulated signals, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'10), Techn. Digest (San Diego, CA, USA, 2010), paper OThK3

    Google Scholar 

  87. T. Vallaitis, R. Bonk, J. Guetlein, D. Hillerkuss, J. Li, R. Brenot, F. Lelarge, G.H. Duan, W. Freude, J. Leuthold, Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals. Opt. Express 18, 6270–6276 (2010)

    Article  ADS  Google Scholar 

  88. R. Bonk, G. Huber, T. Vallaitis, R. Schmogrow, D. Hillerkuss, C. Koos, W. Freude, J. Leuthold, Impact of alfa-factor on SOA dynamic range for 20 GBd BPSK, QPSK and 16-QAM signals, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'11), Techn. Digest (Los Angeles, CA, USA, 2011), paper OML4

    Google Scholar 

  89. A. Fiore, A. Markus, Differential gain and gain compression in quantum-dot lasers. IEEE J. Quantum Electron. 43, 287–294 (2007)

    Article  ADS  Google Scholar 

  90. T. Vallaitis, R. Bonk, J. Guetlein, C. Meuer, D. Hillerkuss, W. Freude, D. Bimberg, J. Leuthold, Optimizing SOA for large input power dynamic range with respect to applications in extended GPON, OSA Topical Meeting: Access Networks and In-house Communications (ANIC'10), Techn. Digest (Karlsruhe, Germany, 2010), paper AThC4

    Google Scholar 

  91. P. Runge, Nonlinear effects in ultralong semiconductor optical amplifiers for optical communications: physics and applications, PhD thesis, University of Berlin (TH) (2010)

    Google Scholar 

  92. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K. Kitayama, Cross-gain modulation in quantum-dot SOA at 1550 nm. IEEE J. Quantum Electron. 46, 1696–1703 (2010)

    Article  ADS  Google Scholar 

  93. J. Leuthold, R. Bonk, T. Vallaitis, A. Marculescu, W. Freude, C. Meuer, D. Bimberg, R. Brenot, F. Lelarge, G.-H. Duan, Linear and nonlinear semiconductor optical amplifiers, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'10), Techn. Digest (San Diego, CA, USA, 2010), paper OThI3

    Google Scholar 

  94. R. Bonk, C. Meuer, T. Vallaitis, S. Sygletos, S. Ben-Ezra, S. Tsadka, A.R. Kovsh, I.L. Krestnikov, M. Laemmlin, D. Bimberg, W. Freude, J. Leuthold, Single and multiple channel operation dynamics of linear quantum-dot semiconductor optical amplifier, Proc. 34th Europ. Conf. Opt. Commun. (ECOC'08), Brussels, Belgium (2008), paper Th1.C.2

    Google Scholar 

  95. S. Koenig, J. Pfeiffle, R. Bonk, T. Vallaitis, C. Meuer, D. Bimberg, C. Koos, W. Freude, J. Leuthold, Optical and electrical power dynamic range of semiconductor optical amplifiers in radio-over-fiber networks, Proc. 36th Europ. Conf. Opt. Commun. (ECOC'10), Torino, Italy (2010), paper Th.10.B.6

    Google Scholar 

  96. S. Koenig, M. Hoh, R. Bonk, H. Wang, P. Pahl, T. Zwick, C. Koos, W. Freude, J. Leuthold, Rival signals in SOA reach-extended WDM-TDM-GPON converged with RoF, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'11), Techn. Digest (Los Angeles, CA, USA, 2011), paper OWT1

    Google Scholar 

  97. http://www.ciphotonics.com/cip_semiconductor.htm

  98. http://www.kamelian.com/products.html

  99. http://www.thorlabs.de/Navigation.cfm?Guide_ID=2105

  100. http://qdlaser.com/product01.html

  101. http://www.oclaro.com/product_pages/TL5000DCJ.html

  102. A. Borghesani, Reflective based active semiconductor components for next generation optical access networks, Proc. 36th Europ. Conf. Opt. Commun. (ECOC'10), Torino, Italy (2010), paper Mo.1.B.1

    Google Scholar 

  103. A. Borghesani, I.F. Lealman, A. Poustie, D.W. Smith, R. Wyatt, High temperature, colourless operation of a reflective semiconductor optical amplifier for 2.5 Gbit/s upstream transmission in a WDM-PON, Proc. 33rd Europ. Conf. Opt. Commun. (ECOC'07), Berlin, Germany (2007), paper 6.4.1

    Google Scholar 

  104. P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, R. Moore, Spectral slicing WDM-PON using wavelength-seeded reflective SOAs. Electron. Lett. 37, 1181–1182 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to René Bonk Dipl.-Phys. , Thomas Vallaitis Dr. , Wolfgang Freude Prof. Dr. , Juerg Leuthold Prof. Dr. , Richard Penty Prof. , Anna Borghesani Dr. or Ian F. Lealman Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bonk, R. et al. (2012). Linear Semiconductor Optical Amplifiers. In: Venghaus, H., Grote, N. (eds) Fibre Optic Communication. Springer Series in Optical Sciences, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20517-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20517-0_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20516-3

  • Online ISBN: 978-3-642-20517-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics