Skip to main content

Fibre Amplifiers

  • Chapter
  • First Online:
Fibre Optic Communication

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 161))

Abstract

The chapter gives a detailed treatment of erbium-doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including the basic physics and relevant in-depth theoretical modeling, amplifier characteristics and performance data as a function of specific operation parameters. Typical applications in fiber-optic communication systems and the improvements achievable through the use of fiber amplifiers are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The signal length \(L_{{\textup{eff}}}^{s}\) is defined through the relation \(P_{{\textup{s}}}^{0}L_{{\textup{eff}}}^{s}=\int _{0}^{L}{P_{{\textup{s}}}(z)\mathrm{d}z}\), where \(P_{{\textup{s}}}^{0}\) is the signal power at \(z=0\). In the absence of gain and assuming that the loss rate at the signal and pump wavelength are identical, the signal effective length equals the Raman effective length in (11.23).

References

  1. A.T. Pedersen, L. Grüner-Nielsen, K. Rottwitt, Measurement and modeling of low wavelength losses of silica fibers and their impact at communication wavelengths. J. Lightw. Technol. 27, 1296–1300 (2009)

    Article  ADS  Google Scholar 

  2. P.C. Becker, N.A. Olson, J.R. Simpson, Erbium-Doped Fiber Amplifiers, Fundamentals and Technology (Academic Press, San Diego, 1999)

    Google Scholar 

  3. E. Desurvire, Erbium Doped Fiber Amplifiers, Principles and Applications (Wiley, New York, 1994)

    Google Scholar 

  4. M.J.F. Digonet, Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd edn. (Marcel Dekker, New York, 1993)

    Google Scholar 

  5. C.R. Giles, E. Desurvire, Modeling erbium-doped fiber amplifiers. J. Lightw. Technol. 9, 271–283 (1991)

    Article  ADS  Google Scholar 

  6. Y. Sun, J.L. Zyskind, A.K. Srivastava, Average inversion level, modeling, and physics of erbium-doped fiber amplifiers. J. Sel. Top. Quantum Electron. 3, 991–1007 (1997)

    Article  Google Scholar 

  7. P.F. Wysocki, J.R. Simpson, D. Lee, Prediction of gain peak wavelength for Er-doped fiber amplifiers and amplifier chains. IEEE Photon. Technol. Lett. 6, 1098–1100 (1994)

    Article  ADS  Google Scholar 

  8. V.L. Mazurczyk, J.L. Zyskind, Polarization dependent gain in erbium doped-fiber amplifiers. IEEE Photon. Technol. Lett. 6, 616–618 (1994)

    Article  ADS  Google Scholar 

  9. J. Nagel, The dynamic behaviour of amplified systems, Opt. Fiber Commun. Conf. (OFC'98), Techn. Digest (San Jose, CA, USA, 1998), paper ThO3

    Google Scholar 

  10. B. Pálsdóttir, Erbium doped AirClad fibers for high power broad band amplifiers and single mode erbium doped fibers for high performance amplifiers and lasers, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'08), Techn. Digest (San Diego, CA, USA, 2008), paper OTuJ1

    Google Scholar 

  11. O. Lumholt, J.H. Povlsen, K. Schüsler, A. Bjarklev, S. Dahl-Pedersen, T. Rasmussen, K. Rottwitt, Quantum limited noise figure operation of high gain erbium doped fiber amplifiers. J. Lightw. Technol. 11, 1344–1352 (1993)

    Article  ADS  Google Scholar 

  12. Y. Sun, A.K. Srivastava, J. Zhou, J.W. Sulhoff, Optical fiber amplifiers for WDM networks. Bell Labs Tech. J. 4, 187–206 (1999)

    Article  Google Scholar 

  13. F. Koch, B. Palsdottir, J.O. Olsen, T. Veng, B. Flintham, R. Keys, 30 dBm wideband air-clad EDFA using two pump lasers, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'08), Techn. Digest (San Diego, CA, USA, 2008), paper OWU3

    Google Scholar 

  14. K.P. Hansen, J. Broeng, P.M.W. Skovgaard, J.R. Folkenberg, M.D. Nielsen, A. Pedersen, T.P. Hansen, H.R. Simonsen, High-power photonic crystal fiber lasers: Design, handling and subassemblies, in Fiber Lasers II: Technology, Systems and Applications. Proc. SPIE (2005), pp. 273–283

    Google Scholar 

  15. O. Schmidt, J. Rothhardt, T. Eidam, F. Röser, J. Limpert, A. Tünnermann, K.P. Hansen, C. Jakobsen, J. Broeng, Single-polarization ultra-large-mode-area Yb-doped photonic crystal fiber. Opt. Express 16, 3918–3923 (2008)

    Article  ADS  Google Scholar 

  16. S. Ramachandran, J.W. Nicholson, S. Ghalmi, M.F. Yan, P. Wisk, E. Monberg, F.E. Dimarcello, Light propagation with ultralarge modal areas in optical fibers. Opt. Lett. 31, 1797–1799 (2006)

    Article  ADS  Google Scholar 

  17. S. Ramachandran, K. Brar, S. Ghalmi, K. Aiso, M. Yan, D. Trevor, J. Flemming, C. Headley, P. Wisk, G. Zydzik, M. Fisteyn, E. Monberg, F. Dimarcello, High-power amplification in a 2040 µm2 higher order mode. Proc. SPIE, vol. 6453 (2007), 64532G

    Google Scholar 

  18. K. Rottwitt, H.D. Kidorf, A 92 nm bandwidth Raman amplifier, Opt. Fiber Commun. Conf. (OFC'98), Techn. Digest (San Jose, CA, USA, 1998), post-deadline paper PD6

    Google Scholar 

  19. K. Rottwitt, J.H. Povlsen, A. Bjarklev, O. Lumholt, B. Pedersen, T. Rasmussen, Noise in distributed erbium doped fibers. IEEE Photon. Technol. Lett. 5, 218–221 (1993)

    Article  ADS  Google Scholar 

  20. J. Bromage, K. Rottwitt, M.E. Lines, A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles. IEEE Photon. Technol. Lett. 14, 24–26 (2002)

    Article  ADS  Google Scholar 

  21. K. Rottwitt, A. Stentz, Raman amplification in lightwave communication systems, in Optical Fiber Telecommunication IV A, ed. by I.P. Kaminov, T. Li (Academic Press, San Diego, 2002), Chap. 5

    Google Scholar 

  22. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, E. Rabarrijoana, Pump interactions in a 100 nm bandwidth Raman amplifier. IEEE Photon. Technol. Lett. 11, 530–532 (1999)

    Article  ADS  Google Scholar 

  23. K. Rottwitt, Distributed Raman amplifiers, in Raman Amplification, ed. by C. Headley, G.P. Agrawal (Academic Press, San Diego, 2005), Chap. 3

    Google Scholar 

  24. K. Rottwitt, J. Bromage, A.J. Stentz, L. Leng, M.E. Lines, H. Smith, Scaling the Raman gain coefficient: Applications to germanosilicate fibers. J. Lightw. Technol. 21, 1652–1663 (2003)

    Article  ADS  Google Scholar 

  25. K. Rottwitt, J.H. Povlsen, Analyzing the fundamental properties of Raman amplification in optical fibers. J. Lightw. Technol. 23, 3597–3605 (2005)

    Article  ADS  Google Scholar 

  26. R.W. Hellwarth, Third-order optical susceptibilities of liquids and solids. Prog. Quantum Electron. 5(1), 1–68 (1977)

    ADS  Google Scholar 

  27. R.H. Stolen, J.P. Gordon, W.J. Tomlinson, H.A. Haus, Raman response function of silica-core fibers. J. Opt. Soc. Am. B 6, 1159–1166 (1989)

    Article  ADS  Google Scholar 

  28. S. Popov, E. Vanin, G. Jacobsen, Influence of polarization mode dispersion value in dispersion-compensating fibers on the polarization dependence of Raman gain. Opt. Lett. 27, 848–850 (2002)

    Article  ADS  Google Scholar 

  29. Q. Lin, G.P. Agrawal, Statistics of polarization-dependent gain in fiber-based Raman amplifiers. Opt. Lett. 28, 227–229 (2003)

    Article  ADS  Google Scholar 

  30. Q. Lin, G.P. Agrawal, Vector theory of stimulated Raman scattering and its application to fiber-based Raman amplifiers. J. Opt. Soc. Am. B 20, 1616–1631 (2003)

    Article  ADS  Google Scholar 

  31. J. Bromage, Raman amplification for fiber communication systems. J. Lightw. Technol. 22, 79–93 (2004)

    Article  ADS  Google Scholar 

  32. P.B. Hansen, L. Eskildsen, A.J. Stentz, T.A. Strasser, J. Judkins, J.J. DeMarco, R. Pedrazzani, D.J. Digiovanni, Rayleigh scattering limitations in distributed Raman pre-amplifiers. IEEE Photon. Technol. Lett. 10, 159–161 (1998)

    Article  ADS  Google Scholar 

  33. J. Auyeng, A. Yariv, Spontaneous and stimulated Raman scattering in long low loss fibers. IEEE J. Quantum Electron. QE-14, 347–352 (1978)

    Article  ADS  Google Scholar 

  34. G.P. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic Press, San Diego, 1995)

    Google Scholar 

  35. J. Stark, P. Mitra, A. Sengupta, Information capacity of nonlinear wavelength division multiplexing fiber optic transmission line. Opt. Fiber Technol. 7, 275–288 (2001)

    Article  ADS  Google Scholar 

  36. M. Nissov, K. Rottwitt, H. Kidorf, F. Kerfoot, Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers. Electron. Lett. 35, 997–998 (1999)

    Article  Google Scholar 

  37. C.R.S. Fludger, V. Handerek, R.J. Mears, Pump to signal RIN transfer in Raman fiber amplifiers. J. Lightw. Technol. 18, 1140–1148 (2001)

    Article  ADS  Google Scholar 

  38. M.O. van Deventer, Polarization properties of Rayleigh backscattering in single-mode fibers. J. Lightw. Technol. 11, 1895–1899 (1993)

    Article  ADS  Google Scholar 

  39. L.F. Mollenauer, K. Smith, Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated by Raman gain. Opt. Lett. 13, 675–677 (1988)

    Article  ADS  Google Scholar 

  40. D. Fishman, W.A. Thompson, L. Vallone, LambdaXtreme transport system; R&D of a high capacity system for low cost ultra long haul DWDM transport. Bell Labs Tech. J. 11, 27–53 (2006)

    Article  Google Scholar 

  41. G. Charlet, E. Corbel, J. Lazaro, A. Klekamp, R. Dischler, P. Tran, W. Idler, H. Mandoyan, A. Konczykowska, F. Jorge, S. Bigo, WDM transmission at 6 Tbit/s capacity over transatlantic distance, using 42.7-Gbit/s differential phase-shift keying without pulse carver. J. Lightw. Technol. 23, 104–107 (2005)

    Article  ADS  Google Scholar 

  42. A.H. Gnauck, G. Charlet, P. Tran, P.J. Winzer, C.R. Doerr, J.C. Centanni, E.C. Burrows, T. Kawanishi, T. Sakamoto, K. Higuma, 25.6 Tbit/s WDM transmission of polarization multiplexed RZ-DQPSK signals. J. Lightw. Technol. 26, 79–84 (2008)

    Article  ADS  Google Scholar 

  43. G. Charlet, J. Renaudier, H. Mardoyan, P. Tran, O.B. Pardo, F. Verluise, M. Achouche, A. Boutin, F. Blache, J.-Y. Dupuy, S. Bigo, Transmission of 16.4 bit/s capacity over 2550 km using PDM QPSK modulation format and coherent receiver. J. Lightw. Technol. 27, 153–157 (2009)

    Article  ADS  Google Scholar 

  44. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, B. Jalali, Observation of stimulated Raman amplification in silicon waveguides. Opt. Express 11, 1731–1739 (2003)

    Article  ADS  Google Scholar 

  45. D. Dimitropoulos, D.R. Solli, R. Claps, O. Boyraz, B. Jalali, Noise figure of silicon Raman amplifiers. J. Lightw. Technol. 26, 847–852 (2008)

    Article  ADS  Google Scholar 

  46. D. Noordegraaf, M. Lorenzen, C.V. Nielsen, K. Rottwitt, Brillouin scattering in fiber optical parametric amplifiers, Proc. 9th Internat. IEEE Conf. Transparent Optical Netw. (ICTON '07), vol. 1, pp. 197–200

    Google Scholar 

  47. C.J. McKinstrie, S. Radic, M.G. Raymer, Quantum noise properties of parametric amplifiers driven by two pump waves. Opt. Express 12, 5037–5066 (2004)

    Article  ADS  Google Scholar 

  48. K. Rottwitt, M.R. Lorenzen, D. Noordegraaf, C. Peucheret, Gain characteristics of a saturated fiber optic parametric amplifier, Proc. 10th Internat. IEEE Conf. Transparent Optical Netw. (ICTON '08), vol. 1, pp. 62–64, paper Mo.D1.1

    Google Scholar 

  49. P. Kylemark, P.O. Hedekvist, H. Sunnerud, M. Karlsson, P.A. Andrekson, Noise characteristics of fiber optical parametric amplifiers. J. Lightw. Technol. 22, 409–416 (2004)

    Article  ADS  Google Scholar 

  50. M. Lorenzen, D. Noordegraaf, C.V. Nielsen, O. Odgaard, L. Grüner-Nielsen, K. Rottwitt, Brillouin suppression in a fiber optical parametric amplifier by combining temperature distribution and phase modulation, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'08), Techn. Digest (San Diego, CA, USA, 2008), paper OML1

    Google Scholar 

  51. J.M. Chavez Boggio, J.R. Windmiller, M. Knutzen, R. Jiang, C. Bres, N. Alic, B. Stossel, K. Rottwitt, S. Radic, 730-nm optical parametric conversion from near- to short-wave infrared band. Opt. Express 16, 5435–5443 (2008)

    Article  ADS  Google Scholar 

  52. P.A. Andrekson, M. Westlund, H. Sunnerud, High resolution optical waveform sampling using fiber-optic parametric amplifiers, Proc. 2008 IEEE/LEOS Winter Topical Meeting (2008), pp. 55–56, paper MB3

    Google Scholar 

  53. P.A. Andrekson, M. Westlund, Nonlinear optical fiber based high resolution all-optical waveform sampling, Laser & Photon. Rev. 1, 231–248 (2007)

    Article  Google Scholar 

  54. J.M. Chavez Boggio, C. Lundström, J. Yang, H. Sunnerud, P.A. Andrekson, Double-pumped FOPA with 40 dB flat gain over 81 nm bandwidth, Proc. 34th Europ. Conf. Opt. Commun. (ECOC'08), Brussels, Belgium (2008), paper Tu.3.B.5

    Google Scholar 

  55. C. Peucheret, M. Lorenzen, J. Seonne, D. Noordegraaf, C.V. Nielsen, L. Grüner-Nielsen, K. Rottwitt, Amplitude regeneration of RZ-DPSK signals in single pump fiber optic parametric amplifiers. IEEE Photon. Technol. Lett. 21, 872–874 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Rottwitt Prof. Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rottwitt, K. (2012). Fibre Amplifiers. In: Venghaus, H., Grote, N. (eds) Fibre Optic Communication. Springer Series in Optical Sciences, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20517-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20517-0_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20516-3

  • Online ISBN: 978-3-642-20517-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics