Advertisement

Field Emission from Quantum Wire Superlattices of Non-parabolic Semiconductors

  • Sitangshu BhattacharyaEmail author
  • Kamakhya Prasad GhatakEmail author
Chapter
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 170)

Abstract

In recent years, modern fabrication techniques have generated altogether a new dimension in the arena of quantum effect devices through the experimental realization of an important artificial structure known as semiconductor superlattice (SL) by growing two similar but different semiconducting materials in alternate layers with finite thicknesses. The materials forming the alternate layers have the same kind of band structure but different energy gaps.

Keywords

Dispersion Relation Electron Concentration Quantum Wire Constituent Material Quantum Cascade Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L.V. Keldysh, Sov. Phys. Solid State 4, 1658 (1962)Google Scholar
  2. 2.
    L. Esaki, R. Tsu, IBM J. Res. Develop. 14, 61 (1970)Google Scholar
  3. 3.
    G. Bastard, Wave Mechanics Applied to Heterostructures (Editions de Physique, Les Ulis, 1990)Google Scholar
  4. 4.
    E.L. Ivchenko, G. Pikus, Superlattices and Other Heterostructures (Springer, Berlin, 1995)Google Scholar
  5. 5.
    R. Tsu, Superlattices to Nanoelectronics (Elsevier, Amsterdam, 2005)Google Scholar
  6. 6.
    P. Fürjes, Cs. Dücs, M. Ádám, J. Zettner, I. Bársony, Superlatt. Microstr. 35, 455 (2004)Google Scholar
  7. 7.
    T. Borca-Tasciuc, D. Achimov, W.L. Liu, G. Chen, H.-W. Ren, C.-H. Lin, S.S. Pei, Microscale Thermophys. Eng. 5, 225 (2001)Google Scholar
  8. 8.
    B.S. Williams, Nat. Photonics 1, 517 (2007)Google Scholar
  9. 9.
    A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, F. Tittel, R.F. Curl, Appl. Phys. B 90, 165 (2008)Google Scholar
  10. 10.
    M.A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, Appl. Phys. Lett. 92, 201101 (2008)Google Scholar
  11. 11.
    G.J. Brown, F. Szmulowicz, R. Linville, A. Saxler, K. Mahalingam, C.-H. Lin, C.H. Kuo, W.Y. Hwang, IEEE Photon. Technol. Lett. 12, 684 (2000)Google Scholar
  12. 12.
    H.J. Haugan, G.J. Brown, L. Grazulis, K. Mahalingam, D.H. Tomich, Phys. E Low Dimens. Syst. Nanostr. 20, 527 (2004)Google Scholar
  13. 13.
    S.A. Nikishin, V.V. Kuryatkov, A. Chandolu, B.A. Borisov, G.D. Kipshidze, I. Ahmad, M. Holtz, H. Temkin, Jpn. J. Appl. Phys. 42, L1362 (2003)Google Scholar
  14. 14.
    Y.-K. Su, H.-C. Wang, C.-L. Lin, W.-B. Chen, S.-M. Chen, Jpn. J. Appl. Phys. 42, L751 (2003)Google Scholar
  15. 15.
    C.H. Liu, Y.K. Su, L.W. Wu, S.J. Chang, R.W. Chuang, Semicond. Sci. Technol. 18, 545 (2003)Google Scholar
  16. 16.
    S.-B. Che, I. Nomura, A. Kikuchi, K. Shimomura, K. Kishino, Phys. Stat. Sol. B 229, 1001 (2002).Google Scholar
  17. 17.
    C.P. Endres, F. Lewen, T.F. Giesen, S. Schlemmer, D.G. Paveliev, Y.I. Koschurinov, V.M. Ustinov, A.E. Zhucov, Rev. Sci. Instrum. 78, 043106 (2007)Google Scholar
  18. 18.
    F. Klappenberger, K.F. Renk, P. Renk, B. Rieder, Y.I. Koshurinov, D.G. Pavelev, V. Ustinov, A. Zhukov, N. Maleev, A. Vasilyev, Appl. Phys. Lett. 84, 3924 (2004)Google Scholar
  19. 19.
    X. Jin, Y. Maeda, T. Saka, M. Tanioku, S. Fuchi, T. Ujihara, Y. Takeda, N. Yamamoto, Y. Nakagawa, A. Mano, S. Okumi, M. Yamamoto, T. Nakanishi, H. Horinaka, T. Kato, T. Yasue, T. Koshikawa, J. Cryst. Growth 310, 5039 (2008)Google Scholar
  20. 20.
    X. Jin, N. Yamamoto, Y. Nakagawa, A. Mano, T. Kato, M. Tanioku, T. Ujihara, Y. Takeda, S. Okumi, M. Yamamoto, T. Nakanishi, T. Saka, H. Horinaka, T. Kato, T. Yasue, T. Koshikawa, Appl. Phys. Express 1, 045002 (2008)Google Scholar
  21. 21.
    B.H. Lee, K.H. Lee, S. Im, M.M. Sung, Org. Electron. 9, 1146 (2008)Google Scholar
  22. 22.
    P.-H. Wu, Y.-K. Su, I.-L. Chen, C.-H. Chiou, J.-T. Hsu, W.-R. Chen, Jpn. J. Appl. Phys. 45, L647 (2006)Google Scholar
  23. 23.
    A.C. Varonides, Renew. Ener. 33, 273 (2008)Google Scholar
  24. 24.
    M. Walther, G. Weimann, Phys. Stat. Sol. B 203, 3545 (2006)Google Scholar
  25. 25.
    R. Rehm, M. Walther, J. Schmitz, J. Flei β ner, F. Fuchs, J. Ziegler, W. Cabanski, Opto-electron. Rev. 14, 19 (2006)Google Scholar
  26. 26.
    R. Rehm, M. Walther, J. Scmitz, J. Fleissner, J. Ziegler, W. Cabanski, R. Breiter, Electron. Lett. 42, 577 (2006)Google Scholar
  27. 27.
    G.J. Brown, F. Szmulowicz, H. Haugan, K. Mahalingam, S. Houston,Microelectron. J. 36, 256 (2005)Google Scholar
  28. 28.
    K.V. Vaidyanathan, R.A. Jullens, C.L. Anderson, H.L. Dunlap, Solid State Electron. 26, 717 (1983)Google Scholar
  29. 29.
    B.A. Wilson, IEEE J. Quantum Electron. 24, 1763 (1988)Google Scholar
  30. 30.
    M. Krichbaum, P. Kocevar, H. Pascher, G. Bauer, IEEE J. Quantum Electron. 24, 717 (1988)Google Scholar
  31. 31.
    J.N. Schulman, T.C. McGill, Appl. Phys. Lett. 34, 663 (1979)Google Scholar
  32. 32.
    H. Kinoshita, T. Sakashita, H. Fajiyasu, J. Appl. Phys. 52, 2869 (1981)Google Scholar
  33. 33.
    L. Ghenin, R.G. Mani, J.R. Anderson, J.T. Cheung, Phys. Rev. B 39, 1419 (1989)Google Scholar
  34. 34.
    C.A. Hoffman, J.R. Mayer, F.J. Bartoli, J.W. Han, J.W. Cook, J.F. Schetzina, J.M. Schubman, Phys. Rev. B. 39, 5208 (1989)Google Scholar
  35. 35.
    V.A. Yakovlev, Sov. Phys. Semicond. 13, 692 (1979)Google Scholar
  36. 36.
    E.O. Kane, J. Phys. Chem. Solids 1, 249 (1957)Google Scholar
  37. 37.
    H. Sasaki, Phys. Rev. B 30, 7016 (1984)Google Scholar
  38. 38.
    H.X. Jiang, J.Y. Lin, J. Appl. Phys. 61, 624 (1987)Google Scholar
  39. 39.
    G.M.T. Foley, P.N. Langenberg, Phys. Rev. B 15B, 4850 (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Ctr. Electronics Design and Technology Nano Scale Device Research LaboratoryIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Electronic ScienceUniversity of CalcuttaKolkataIndia

Personalised recommendations