Skip to main content

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 57))

Abstract

A series of four PhD projects worked out under the umbrella of the research training group GRK 615 are summarized in this contribution. The first is on the multiscale modeling of the mechanics of an atomic force microscope with special emphasis on the contact problem. At the relevant length scales atomic force interactions have been considered. The total device is modeled in a dimension adaptive manner using beam elements for the cantilever, solid elements for the tip and an atomic interaction approach for the contact problem. The second thesis is a straightforeward continuation of this research be setting up a powerful MD-FE coupling scheme especially for contact problems. Special emphasis has been led on the consistent coupling avoiding ghost forces by introducing dummy atoms and a boundary layer for the atomic domain. A second series is on the treatment of biomechanics of bones. For a better understanding of the biomechanical phenomena a computational multiscale environment has been implemented, where a cortical section with reinforcing osteons is modeled. The osteons itself are treated on a smaller length scale as laminar cross ply structures and the basic anisotropic properties of the layer are homogenized from the basic constituents, i.e. collagen matrix and hydroxyapatite crystals in dependency of the grade of mineralization. Based on a simple strain criterion detected at voids in between the layers of the osteons a closed control circuit has been realized to mimic the aging of bone. A micro-crack theory as basic origin for the cellular stimulation for bone remodeling has been realized in the last thesis. The strain driven evolution of interlaminar micro-cracks is simulated within an adaptively refined finite element framework. For studies on the released material integrity on the bone cells a sophisticated cell model in analogy to self-stabilizing tensegrity structures has been developed. By this model especially the amplification of stresses from the membrane into the nucleus is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauman, P.T., Oden, J.T., Prudhomme, S.: Adaptive multiscale modeling of polymeric materials with Arlequin coupling and goals algorithms. Computer Methods in Applied Mechanics and Engineering 198(5-8), 799–818 (2009)

    Article  Google Scholar 

  2. Baupre, G.S., Orr, T.E., Carter, D.R.: An approach for time-dependent bone modeling and remodeling-applications: A preliminary remodeling simulation. Journal of Orthopaedic Research 8, 662–670 (1990)

    Article  Google Scholar 

  3. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Hughes, T.J.R., Reali, A., Scovazzi, G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Engrg. 197, 173–201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beno, T., Yoon, Y.-J., Cowin, S.C., Fritton, S.P.: Estimation of bone permeability using accurate microstructural measurements. Journal of Biomechanics 39, 2378–2387 (2006)

    Article  Google Scholar 

  5. Bentolila, V., Boyce, T.M., Fyhrie, D.P., Drumb, R., Skerry, T.M., Schaffler, M.B.: Intracortical remodeling in adult rat long bones after fatigue loading. Bone 23, 275–281 (1998)

    Article  Google Scholar 

  6. Bhushan, B.: Springer Handbook of Nanotechnology. Springer, New York (2004)

    Book  Google Scholar 

  7. Bonivtch, A.R., Bonewald, L.F., Nicolella, D.P.: Tissue strain amplification at the osteocyte lacuna: A microstructural finite element analysis. Journal of Biomechanics 40, 2199–2206 (2007)

    Article  Google Scholar 

  8. Brewer, J.C., Lagace, P.A.: Quadratic stress criterion for initiation of delamination. Quadratic Stress Criterion for Initiation of Delamination 22, 1141–1155 (1988)

    Google Scholar 

  9. Brinkmeier, M., Nackenhorst, U.: An approach for large-scale gyroscopic eigenvalue problems with application to high-frequency response of rolling tires. Computational Mechanics 41(4), 503–515 (2008)

    Article  MATH  Google Scholar 

  10. Broughton, J.Q., Abraham, F.F., Bernstein, N., Kaxiras, E.: Concurrent coupling of length scales: Methodology and application. Physical Review B – Condensed Matter and Materials Physics 60(4), 2391–2403 (1999)

    Article  Google Scholar 

  11. Burger, E.H., Klein-Nulend, J.: Mechanotransduction in bone – Role of the lacuno-canalicular network. FASEB Journal 13, S101–S112 (1999)

    Google Scholar 

  12. Burr, D.B.: Targeted and nontargeted remodeling. Bone 30, 2–4 (2002)

    Article  Google Scholar 

  13. Burr, D.B., Martin, R.B., Schaffler, M.B., Radin, E.L.: Bone remodeling in response to in-vivo fatigue microdamage. Journal of Biomechanics 18, 189–200 (1985)

    Article  Google Scholar 

  14. Charalambakis, N.: Homogenization techniques and micromechanics. A survey and perspectives. Applied Mechanics Review 63 (2010)

    Google Scholar 

  15. Chen, C.S., Ingber, D.E.: Tensegrity und Mechanoregulation: Vom Skelett zum Zytoskelett. Osteopathische Medizin, Zeitschrift für ganzheitliche Heilverfahren 9, 4–17 (2008)

    Article  Google Scholar 

  16. Cowin, S.C.: Bone poroelasticity. Journal of Biomechanics 32(3), 217–238 (1999)

    Article  MathSciNet  Google Scholar 

  17. Cowin, S.C. (ed.): Bone Mechanics Handbook. CRC Press, Boca Raton (2001)

    Google Scholar 

  18. Cowin, S.C., Hegedus, D.H.: Bone remodeling I: Theory of adaptive elasticity. Journal of Elasticity 6, 313–326 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Curnier, A.: Unilateral contact mechanical modelling. In: Panagiotopoulos, P., Wriggers, P. (eds.) CISM Lecture Series. Springer, Heidelberg (1999)

    Google Scholar 

  20. Deligianni, D.D., Apostolopoulos, C.A.: Multilevel finite element modeling for the prediction of local cellular deformation in bone. Biomechanics and Modeling in Mechanobiology 7, 151–159 (2008)

    Article  Google Scholar 

  21. Dhia, H.B., Rateau, G.: The Arlequin method as a flexible engineering design tool. International Journal of Numerical Methods in Engineering 62, 1442–1492 (2005)

    Article  MATH  Google Scholar 

  22. Doblare, M., García, J.M.: Anisotropic bone remodelling model based on a continuum damage-repair theory. Journal of Biomechanics 35(1), 1–17 (2002)

    Article  Google Scholar 

  23. Dobson, M., Elliott, R., Luskin, M., Tadmor, E.: A multilattice quasicontinuum for phase transforming materials: Cascading cauchy born kinematics. Journal of Computer-Aided Materials Design 14, 219–237 (2007)

    Article  Google Scholar 

  24. Dolbow, J., Moes, N., Belytschko, T.: Discontinuous enrichment in finite elements with a partition of unity method. Finite Elements in Analysis and Design 36, 235–260 (2000)

    Article  MATH  Google Scholar 

  25. Ebinger, T., Diebels, S., Steeb, H.: Numerical homogenization techniques applied to growth and remodelling phenomena. Computational Mechanics 39(6), 815–830 (2007)

    Article  MATH  Google Scholar 

  26. Ercolessi, F., Adams, J.: Interatomic potentials from first-principles calculations: the force-matching method. Europhysics Letters 26, 583–588 (1994)

    Article  Google Scholar 

  27. Erringen, A.C.: Microcontinuum Field Theories. Springer, Heidelberg (1998)

    Google Scholar 

  28. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 241, 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fish, J., Nuggehally, M., Shephard, M., Picu, C., Badia, S., Park, M., Gunzburger, M.: Concurrent AtC coupling based on a blend of the continuum stress and the atomistic force. Computer Methods in Applied Mechanics and Engineering 196, 4548–4560 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Floerkemeier, T., Lutz, A., Nackenhorst, U., Thorey, F., Waizy, H., Windhagen, H., von Lewinski, G.: Core decompression and osteonecrosis intervention rod in osteonecrosis of the femoral head: Clinical outcome and finite element analysis. In: International Orthopaedics (2010), doi:10.1007/s00264-010-1138-x

    Google Scholar 

  31. Frost, H.M.: Presence of microscopic cracks in vivo in bone. Bull Henry Ford Hosp 8, 25–35 (1960)

    Google Scholar 

  32. Frost, H.M.: Bone microdamage: Factors that impair its repair. In: Uhthoff, H.K. (ed.) Current Concepts in Bone Fragility, pp. 123–148. Springer, Heidelberg (1985)

    Google Scholar 

  33. Geers, M.G.D.: Experimental analysis and computational modelling of damage and fracture. PhD Thesis, Technische Universiteit Eindhoven (1997)

    Google Scholar 

  34. Geers, M.G.D., Kouznetsova, V.G., Brekelmans, W.A.M.: Multi-scale computational homogenization: Trends and challenges. Journal of Computational and Applied Mathematics (2009), doi:10.1016/j.cam.2009.08.77

    Google Scholar 

  35. Ghoniem, N.M., Busso, E.P., Kioussis, N., Huang, H.: Multiscale modelling of nanomechanics and micromechanics: An overview. Philosophical Magazime 83(31–34), 3475–3528 (2003)

    Article  Google Scholar 

  36. Gravemeier, V.: Scale-separating operators for variational multiscale large eddy simulation of turbulent flows. Journal of Computational Physics archive 212(2), 400–435 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Halpin, J.C., Kardos, J.L.: The Halpin–Tsai equations: A review. Polymer Engineering and Science 16(5), 344–352 (1976)

    Article  Google Scholar 

  38. Hamaker, H.C.: The London–van der Waals attraction between spherical particles. Physica 4, 1058–1072 (1937)

    Article  Google Scholar 

  39. Hardy, R.: Formulas for determing local properties in molecular-dynamics simulations: Shock waves. Journal of Chemical Physics 76, 622–628 (1982)

    Article  Google Scholar 

  40. Hashin, Z., Shtrikman, S.: Note on a variational approach to the theory of composite elastic materials. J. Franklin Inst. 271, 336–341 (1961)

    Article  Google Scholar 

  41. Hazenberg, J.G., Freeley, M., Foran, E., Lee, T.C., Taylor, D.: Microdamage: A cell transducing mechanism based on ruptured osteocyte processes. Journal of Biomechanics 39, 2096–2103 (2006)

    Article  Google Scholar 

  42. Heller, M.O., Bergmann, G., Deuretzbacher, G., Dürselen, L., Pohl, M., Claes, L., Haas, N.P., Duda, G.N.: Musculo-skeletal loading conditions at the hip during walking and stair climbing. Journal of Biomechanics 34(7), 883–893 (2001)

    Article  Google Scholar 

  43. Helmich, T.: Elektromechanisch gekoppelte Kontaktmodellierung auf Mikroebene. PhD Thesis, Universität Hannover (2007)

    Google Scholar 

  44. Hill, R.: Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)

    Article  MATH  Google Scholar 

  45. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Sol. 13, 213–222 (1965)

    Article  Google Scholar 

  46. Hughes, T.: Multiscale phenomena: Green’s functions, the dirichlet-to-neumann formulation, subgrid scale models, bubbles and the origin of stablized methods. Computer Methods in Applied Mechanics and Engineering 127, 387–401 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hughes, T., Feijo, G., Mazzei, L., Quincy, J.: The variational multiscale method – A paradigm for computational mechanics. Computer Methods in Applied Mechanics and Engineering 166, 3–24 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ingber, D.E.: Cellular tensegrity: Defining new rules of biological design that govern the cytoskeleton. Journal of Cell Science 104, 613–627 (1993)

    Google Scholar 

  49. Ingber, D.E.: Tensgrity: The architectual basis of cellular mechanotransduction. Annual Review of Physiology 59, 575–599 (1997)

    Article  Google Scholar 

  50. Ingber, D.E.: Tensegrity I. Cell structure and hierarchical systems biology. Journal of Cell Science 116, 1157–1173 (2003)

    Article  Google Scholar 

  51. Jacobs, C.R., Simo, J.C., Beaupre, G.S., Carter, D.C.: Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations. Journal of Biomechanics 6, 603–613 (1997)

    Article  Google Scholar 

  52. Kamm, G., Alers, G.: Low-temperature elastic moduli of aluminium. Journal of Applied Physics 35, 327–330 (1964)

    Article  Google Scholar 

  53. Kardas, D.: A multiscale computational approach for microcrack evolution in cortical bone and related mechanical stimulation of bone cells. PhD Thesis, Institut für Baumechanik und Numerische Mechanik, Leibniz Universität Hannover (2010)

    Google Scholar 

  54. Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: Approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001)

    Article  MATH  Google Scholar 

  55. Krstin, N., Nackenhorst, U., Lammering, R.: Zur konsitutiven Beschreibung des anisotropen beanspruchungsadaptiven Knochenumbaus. Technische Mechanik 20(1), 31–40 (2000)

    Google Scholar 

  56. Kuhl, E., Menzel, A., Steinmann, P.: Computational modeling of growth. A critical review, a classification of concepts and two new consistent approaches. Computational Mechanics 32(1–2), 71–88 (2003)

    Article  MATH  Google Scholar 

  57. Laursen, T.: Computaional Contact and Impact Mechanics. Springer, Heidelberg (2003)

    Google Scholar 

  58. Leng, H., Wang, X., Ross, R.D., Niebur, G.L., Roeder, R.K.: Micro-computed tomography of fatigue microdamage in cortical bone using a barium sulfate contrast agent. Journal of the Mechanical Behavior of Biomedical Materials 1, 68–75 (2008)

    Article  Google Scholar 

  59. Lenz, C.: Numerical micro-meso modelling of mechanosensation driven osteonal remodelling in cortical bone. PhD Thesis, Institut für Baumechanik und Numerische Mechanik, Universität Hannover (2005)

    Google Scholar 

  60. Lifshitz, E.M.: The theory of molecular attractive forces between solids. Soviet Physics JETP (Engl. Transl.) 2, 73–83 (1956)

    Google Scholar 

  61. Liu, B., Huang, Y., Jiang, H., Qu, S., Hwang, K.C.: The atomic-scale finite element method. Computational Methods in Applied Mechanics and Engineering 193, 1849–1864 (2004)

    Article  MATH  Google Scholar 

  62. Lu, G., Tadmor, E.B., Kaxiras, E.: From electrons to finite elements: A concurrent multiscale approach for metals. Physical Review B – Condensed Matter and Materials Physics 73(2), 1–4 (2006)

    Google Scholar 

  63. Lutsko, J.: Stress and elastic constants in anisotropic solids: Molecular dynamics techniques. Journal of Applied Physics 64, 1152–1154 (1988)

    Article  Google Scholar 

  64. Lutz, A., Nackenhorst, U.: Numerical investigations on the biomechanical compatibility of hip-joint endoprostheses. Archive of Applied Mechanics 80(5), 503–512 (2010)

    Article  Google Scholar 

  65. Lutz, A., Nackenhorst, U., von Lewinski, G., Windhagen, H., Floerkemeier, T.: Numerical studies on alternative therapies for femoral head necrosis – A finite element approach and clinical experience. Biomechanics and Modeling in Mechanobiology (2010), doi:10.1007/s10237-010-0261-3

    Google Scholar 

  66. Mahanty, J., Ninham, B.W.: Dispersion Forces. Academic Press, London (1976)

    Google Scholar 

  67. Marotti, G., Ferretti, M., Muglia, M.A., Palumbo, C., Palazzini, S.: A quantitative evaluation of osteoblast-osteocyte relationships on growing endosteal surface of rabbit tibiae. Bone 13, 363–368 (1992)

    Article  Google Scholar 

  68. Martin, R.B.: Toward a unifying theory of bone remodeling. Bone 26, 1–6 (2000)

    Article  Google Scholar 

  69. Martin, R.B., Burr, D.B., Sharkey, N.A.: Skeletal Tissue Mechanics. Springer, Heidelberg (1998)

    Google Scholar 

  70. McCreadie, B.R., Hollister, S.J.: Strain concentrations surrounding an ellipsoid model of lacunae and osteocytes. Computer Methods in Biomechanics and Biomedical Engineering 1, 61–68 (1997)

    Article  Google Scholar 

  71. McGarry, J.G., Klein-Nulend, J., Mullender, M.G., Prendergast, P.J.: A comparsion of strain and fluid shear stress in stimulating bone cell responses – A computational and experimental study. The FASEB Journal 19, 482–484 (2005)

    Google Scholar 

  72. McLachlan, A.D.: Three-body dispersion forces. Molecular Physics 6(4), 423–427 (1963)

    Article  MathSciNet  Google Scholar 

  73. Melenk, J.M., Babuska, I.: The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering 139(1–4), 289–314 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  74. Miller, R., Tadmor, E.: A unified framework and performance benchmark of fourteen multsicale/continuum coupling methods. Modelling and Simulation in Materials Science and Engineering 17, 1–51 (2009)

    Article  Google Scholar 

  75. Miller, R.E., Tadmor, E.B.: The quasicontinuum method: Overview, applications and current directions. J. Comp.-Aid. Mat. Design 9, 203–239 (2002)

    Article  Google Scholar 

  76. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica 21, 571–574 (1973)

    Article  Google Scholar 

  77. Mullender, M., El Haj, A.J., Yang, Y., van Duin, M.A., Burger, E.H., Klein-Nulend, J.: Mechanotransduction of bone cells in vitro: Mechanobiology of bone tissue. Medical & Biological Engineering & Computing 42, 14–21 (2004)

    Article  Google Scholar 

  78. Mura, T.: Micromechanics of Defects in Solids. Springer, Heidelberg (1987)

    Google Scholar 

  79. Nackenhorst, U.: Biomechanics of bones: Modeling and computation of bone remodeling. In: Handbook of Biomineralization, ch. 3, pp. 35–48. Wiley VCH, Chichester (2007)

    Chapter  Google Scholar 

  80. Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Solids. North-Holland, Amsterdam (1993)

    MATH  Google Scholar 

  81. Nicolella, D.P., Moravits, D.E., Gale, A.M., Bonewald, L.F., Lankford, J.: Osteocyte lacunae tissue strain in cortical bone. Journal of Biomechanics 39, 1735–1743 (2006)

    Article  Google Scholar 

  82. Norman, T.L., Wang, Z.: Microdamage of human cortical bone: Incidence and morphology in long bones. Bone 20, 375–379 (1997)

    Article  Google Scholar 

  83. Oden, J.T., Belytschko, T., Babuska, I., Hughes, T.J.R.: Research directions in computational mechanics. Computer Methods in Applied Mechanics and Engineering 192(7–8), 913–922 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  84. Park, H.S., Liu, W.K.: An introduction and tutorial on multiple-scale analysis in solids. Computer Methods in Applied Mechanics and Engineering 193, 1733–1772 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  85. Parsegian, V.A.: Long-range physical forces in the biological milieu. Annual Review of Biophysics and Bioengineering 2, 221–255 (1973)

    Article  Google Scholar 

  86. Pauwels, F.: Gesammelte Abhandlungen zur Funktionalen Anatomie des Bewegungsapparates. Springer, Heidelberg (1965)

    Google Scholar 

  87. Persson, B.N.J.: Sliding Friction: Physical Principles and Applications (Nanoscience and Technology). Springer, Heidelberg (2000)

    MATH  Google Scholar 

  88. Persson, B.N.J.: Theory of rubber friction and contact mechanics. Journal of Chemical Physics 115(8), 3840–3861 (2001)

    Article  Google Scholar 

  89. Preisner, T., Greiff, M., Bala, U.B., Mathis, W.: Numerical computation of magnetic fields applied to magnetic force microscopy. COMPEL 28(1), 120–129 (2009)

    MATH  Google Scholar 

  90. Rho, J.Y., Kuhn-Spearing, L., Zioupos, P.: Mechanical properties and the hierarchical structure of bone. Medical Engineering and Physics 20, 92–102 (1998)

    Article  Google Scholar 

  91. Rice, J.C., Cowin, S.C., Bowman, J.A.: On the dependence of elasticity and strength of concellous bone apparent density. Journal of Biomechanics 21, 155–168 (1988)

    Article  Google Scholar 

  92. Shan, W.: Multiscale coupling based on the quasicontinuum framework, with application to contact problems. PhD Thesis, Leibniz University Hannover (2009)

    Google Scholar 

  93. Shan, W., Nackenhorst, U.: An adaptive FE-MD model coupling approach. Computational Mechanics 46(4), 577–596 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  94. Stamenovic, D., Fredberg, J., Wang, N., Butler, J.P., Ingber, D.E.: A microstructural approach to cytoskeletal mechanics based on tensegrity. Journal of Theoretical Biology 181, 125–136 (1996)

    Article  Google Scholar 

  95. Tadmor, E., Ortiz, M., Phillips, R.: Quasicontinuum analysis of defects in solids. Philosophical Magazine A 73, 1529–1563 (1996)

    Article  Google Scholar 

  96. Taylor, D.: Fracture and repair of bone: A multiscale problem. Journal of Material Science 42, 8911–8918 (2007)

    Article  Google Scholar 

  97. Taylor, W.R., Heller, M.O., Bergmann, G., Duda, G.N.: Tibio-femoral loading during human gait and stair climbing. Journal of Orthopaedic Research 22(3), 625–632 (2004)

    Article  Google Scholar 

  98. Wang, N., Naruse, K., Stamenovic, D., Fredberg, J.J., Mijailovich, S.M., Tolic-Nørrelykke, I.M., Polte, T., Mannix, R., Ingber, D.E.: Mechanical behavior in living cells consistent with the tensegrity model. Proceedings of the National Academy of Sciences of the United States of America 98, 7765–7770 (2001)

    Article  Google Scholar 

  99. Weinans, H., Huiskes, R., Grootenboer, H.J.: The behavior of adaptive bone remodeling simulation models. Journal of Biomechanics 25, 1425–1441 (1992)

    Article  Google Scholar 

  100. Weinans, H., Huiskes, R., Grootenboer, H.J.: Effects of fit and bonding characteristics of femoral stems on adaptive bone remodeling. Journal of Biomechanical Engineering 116, 393–400 (1994)

    Article  Google Scholar 

  101. Weinbaum, S., Cowin, S.C., Zeng, Y.: A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. Journal of Biomechanics 27, 339–360 (1994)

    Article  Google Scholar 

  102. Wolff, J.: Das Gesetz der Transformation der Knochen (1982)

    Google Scholar 

  103. Wriggers, P.: Computational Contact Mechanics. Springer, Heidelberg (2006)

    Book  MATH  Google Scholar 

  104. Wriggers, P.: Nonlinear Finite Element Methods. Springer, Berlin (2008)

    MATH  Google Scholar 

  105. You, L., Cowin, S.C., Schaffler, M.B., Weinbaum, S.: A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. Journal of Biomechanics 34, 1375–1386 (2001)

    Article  Google Scholar 

  106. Zimmerman, J., Webb III, E., Hoyt, J., Jones, R., Klein, P., Bammann, D.: Calculation of stress in atomistic simulation. Modelling and Simulation in Materials Science and Engineering 12, S319–S332 (2004)

    Article  Google Scholar 

  107. Zysset, P.K., Cournier, A.: An alternative model for anisotropic elasticity based on fabric tensors. Mechanics of Materials 21(4), 243–250 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nackenhorst, U., Kardas, D., Helmich, T., Lenz, C., Shan, W. (2011). Computational Techniques for Multiscale Analysis of Materials and Interfaces. In: Stephan, E., Wriggers, P. (eds) Modelling, Simulation and Software Concepts for Scientific-Technological Problems. Lecture Notes in Applied and Computational Mechanics, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20490-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20490-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20489-0

  • Online ISBN: 978-3-642-20490-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics