Skip to main content

Abstract

Poncirus, a close relative of citrus, is a valuable genetic resource for the genetic improvement of citrus. It is resistant to many diseases and pests of citrus and is cold hardy. However, it has not been domesticated or commercialized on a large scale as it has inedible fruits. It is widely used as a rootstock for citrus and has largely been conserved along with it. To produce genetically improved combinations of rootstocks for use in citrus propagation, by sexual hybridization, Poncirus has been used as one of the parents. Ploidy manipulation has also been exploited for use in breeding programs. Poncirus genetic studies have progressed rapidly in recent years with it being used as a parent in intergeneric crosses with citrus for the construction of linkage maps, and the identification, tagging, and cloning of economically important genes. It is also valuable for the development of BAC and cDNA libraries, ESTs, etc., which are of great use in the whole-genome sequencing of citrus. In this chapter, the progress toward these efforts using Poncirus has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asins MJ, Bernet GP, Ruiz C, Cambra M, Guerri J, Carbonell EA (2004) QTL analysis of citrus tristeza virus-citradia interaction. Theor Appl Genet 108:603–611

    Article  PubMed  CAS  Google Scholar 

  • Ballester A, Cervera M, Pena L (2007) Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Rep 26:39–45

    Article  PubMed  CAS  Google Scholar 

  • Befu M, Kitajima A, Yang XL, Hasegawa K (2000) Classification of ‘Tosa-Buntan’ pummelo (Citrus grandis [L.] Osb.), ‘Washington’ navel orange (C. sinensis [L.] Osb.) and trifoliate orange (Poncirus trifoliata [L.] Raf.) chromosomes using young leaves. J Jpn Soc Hortic Sci 69:22–28

    Article  CAS  Google Scholar 

  • Bernet GP, Asins MJ (2003) Identification and genomic distribution of gypsy-like retrotransposons in Citrus and Poncirus. Theor Appl Genet 108:121–130

    Article  PubMed  CAS  Google Scholar 

  • Bowman KD, Wutscher HK, Kaplan DT, Chaparro JX (1999) A new hybrid citrus rootstock for Florida: US-852. Proc FL State Hortic Soc 112:54–55

    Google Scholar 

  • Brasileiro-Vidal AC, dos Santos-Serejo JA, Soares Filho WS, Guerra M (2007) A simple chromosomal marker can reliably distinguish Poncirus from Citrus species. Genetica 129:273–279

    Article  PubMed  CAS  Google Scholar 

  • Cai Q, Guy CL, Moore GA (1994) Extension of the genetic linkage map in Citrus using random amplified polymorphic DNA (RAPD) markers and RFLP mapping of cold-acclimation responsive loci. Theor Appl Genet 89:606–614

    Article  CAS  Google Scholar 

  • Cervera M, Pina JA, Juarez J, Navarro L, Pena L (1998a) Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Rep 16:271–278

    Article  Google Scholar 

  • Cervera M, Juarez J, Navarro A, Pina JA, Duran-Vila N, Navarro L, Pena L (1998b) Genetic transformation and regeneration of mature tissues of woody fruit plants bypassing the juvenile stage. Transgenic Res 7:51–59

    Article  CAS  Google Scholar 

  • Cervera M, Juarez J, Pina JA, Navarro L, Pena L (1998c) Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Rep 18:271–278

    Article  CAS  Google Scholar 

  • Cervera M, Ortega C, Navarro A, Navarro L, Pena L (2000a) Generation of transgenic citrus plants with the tolerance-to-salinity gene HAL2 from yeast. J Hortic Sci Biotechnol 75:26–30

    CAS  Google Scholar 

  • Cervera M, Pina JA, Juarez J, Navarro L, Pena L (2000b) A broad exploration of a transgenic population of citrus: stability on gene expression and phenotype. Theor Appl Genet 100:670–677

    Article  CAS  Google Scholar 

  • Cervera M, Navarro A, Navarro L, Pena L (2006) Retransformation of APETALA1 (AP1) early-flowering citrus plants as a strategy to rapidly evaluate transgenes addressing fruit quality traits. In: Teixeira da Silva JA (ed) Horticulture, ornamental and plant biotechnology: advances and topical issues. Global Science Books, London, pp 117–123

    Google Scholar 

  • Chen C, Bowman KD, Choi YA, Dang PM, Nageswara Rao M, Huang S, Soneji JR, McCollum TG, Gmitter FG Jr (2008) EST-SSR Genetic Maps for Citrus sinensis and Poncirus trifoliata. Tree Genet Genomes 4:1–10

    Article  Google Scholar 

  • Close TJ, Wanamaker S, Lyon M, Mei G, Davies C, et al (2006) A GeneChip R for Citrus. In: Plant and animal genome XIV conference, 14–18 Jan 2006, San Diego, CA, USA, W82, p 26

    Google Scholar 

  • Cristofani M, Machado MA, Grattapaglia D (1999) Genetic linkage maps of Citrus sunki Hort. ex. Tan. and Poncirus trifoliata (L.) Raf. and mapping of citrus tristeza virus resistance gene. Euphytica 109:25–32

    Article  CAS  Google Scholar 

  • Deng XX, Deng ZA, Xiao SY, Zhang WC (1992a) Pollen derived plantlets from anther culture of Ichang papeda hybrids No. 14 and trifoliate orange. Proc Int Soc Citric 1:190–192

    Google Scholar 

  • Deng ZA, Deng XX, Zhang WC, Wan SY (1992b) A preliminary report on gametosomatic fusion in citrus. Proc Int Soc Citric 1:170–172

    Google Scholar 

  • Deng Z, Huang S, Xiao S, Gmitter FG Jr (1997) Development and characterization of SCAR markers linked to the citrus tristeza virus resistance gene from Poncirus trifoliata. Genome 40:697–704

    Article  PubMed  CAS  Google Scholar 

  • Deng Z, Huang S, Ling P, Chen C, Yu C, Weber CA, Moore GA, Gmitter FG Jr (2000) Cloning and characterization of the NBS-LRR class resistance-gene candidate sequence in citrus. Theor Appl Genet 101:814–822

    Article  CAS  Google Scholar 

  • Deng Z, Huang S, Ling P, Yu C, Tao Q, Chen C, Wendell MK, Zhang HB, Gmitter FG Jr (2001) Fine genetic mapping and BAC contig development for the citrus tristeza virus resistance gene locus in Poncirus trifoliata (Raf.). Mol Genet Genom 265:739–747

    Article  CAS  Google Scholar 

  • Dominguez A, Cervera M, Perez R, Romero J, Fagoaga C, Cubero J, Lopez MM, Juarez J, Navarro L, Pena L (2004) Characterization of regenerants obtained under selective conditions after Agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequencies. Mol Breed 14:171–183

    Article  CAS  Google Scholar 

  • Durham RE, Liou PC, Gmitter FG Jr, Moore GA (1992) Linkage of restriction fragment length polymorphisms and isozymes in Citrus. Theor Appl Genet 84:39–48

    Article  CAS  Google Scholar 

  • Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res 14:703–712

    Article  PubMed  CAS  Google Scholar 

  • Fagoaga C, Lopez C, Moreno P, Navarro L, Flores R, Pena L (2005) Viral-like symptoms induced by the ectopic expression of the p23 gene of Citrus tristeza virus are citrus-specific and do not correlate with the pathogenicity of the virus strain. Mol Plant Microbe Interact 18:435–445

    Article  PubMed  CAS  Google Scholar 

  • Fagoaga C, Tadeo FR, Iglesias D, Huerta L, Lliso I, Vidal AM, Talon M, Navarro L, García-Martínez JL, Pena L (2007) Engineering of gibberellin levels in citrus by sense and antisense overexpression of a GA 20-oxidase gene modifies plant architecture. J Exp Bot 58:1407–1420

    Article  PubMed  CAS  Google Scholar 

  • Fang DQ, Federici CT, Roose ML (1998) A high-resolution linkage map of the citrus tristeza virus resistance gene region in Poncirus trifoliata (L.) Raf. Genetics 150:883–890

    PubMed  CAS  Google Scholar 

  • Forner JB, Forner-Giner MA, Alcaide A (2003) Forner-Alcaide 5 and Forner-Alcaide 13: two new citrus rootstocks released in Spain. HortScience 38(4):629–630

    Google Scholar 

  • Garcia R, Asins MJ, Forner J, Carbonell EA (1999) Genetic analysis of apomixis in Citrus and Poncirus by molecular markers. Theor Appl Genet 99:511–518

    Article  CAS  Google Scholar 

  • Garcia R, Asins MJ, Carbonell EA (2000) QTL analysis of yield and seed number in Citrus. Theor Appl Genet 101:487–493

    Article  CAS  Google Scholar 

  • Gentile A, LaMalfa S, Deng ZN, Domina F, Nicolosi E, Tribulato E (1998) Transgenic citrus: first experiences with Rol genes. Rivisti di Frutticoltura e di Ortofloricoltura 61:59–61

    Google Scholar 

  • Germana MA (2007) Haploidy. In: Khan I (ed) Citrus: genetics, breeding and biotechnology. CABI, Cambridge, MA, USA, pp 167–196

    Chapter  Google Scholar 

  • Germana MA, Scarano MT, Crescimanno FG (1996) First results on isolated microspore culture of Citrus. Proc Int Soc Citric 2:882–885

    Google Scholar 

  • Ghorbel R, Juarez J, Navarro L, Pena L (1999) Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants. Theor Appl Genet 99:350–358

    Article  Google Scholar 

  • Gmitter FG Jr, Xiao SY, Huang S, Hu XL, Garnsey SM, Deng Z (1996) A localized linkage map of the citrus tristeza virus resistance gene region. Theor Appl Genet 92:688–695

    Article  CAS  Google Scholar 

  • Gmitter FG Jr, Chen C, Nageswara Rao M, Soneji JR (2007) Citrus fruits. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 4, Fruits and nuts. Springer, Berlin, Germany, pp 265–279

    Google Scholar 

  • Gonzalez-Arnao MT, Engelmann F, Urra C, Morenza M, Rios A (1988) Cryopreservation of citrus apices using the encapsulation-dehydration technique. CryoLetters 19:177–182

    Google Scholar 

  • Grosser JW (2003) Somatic hybridization in citrus – a relevant technique for variety improvement in 21st century. Acta Hort 622:491–497

    Google Scholar 

  • Grosser JW, Louzada ES, Gmitter FG Jr, Chandler JL (1994) Somatic hybridization of complementary citrus rootstocks. HortScience 29(7):812–813

    Google Scholar 

  • Grosser JW, Mourao-Fo FAA, Gmitter FG Jr, Louzada ES, Jiang J, Baergen K, Quiros A, Cabasson C, Schell JL, Chandler JL (1996) Allotetraploid hybrids between citrus and seven related genera produced by somatic hybridization. Theor Appl Genet 92:577–582

    Article  Google Scholar 

  • Grosser JW, Jiang J, Mourao-Fo FAA, Louzada ES, Baergen K, Chandler JL, Gmitter FG Jr (1998) Somatic hybridization, an integral component of citrus cultivar improvement: I Scion improvement. HortScience 33:1057–1059

    Google Scholar 

  • Grosser JW, Ollitrault P, Olivares-Fuster O (2000) Somatic hybridization in citrus: an effective tool to facilitate variety improvement. In Vitro Dev Cell Biol Plant 36:434–449

    Article  Google Scholar 

  • Gutierrez-E MA, Luth D, Moore GA (1997) Factors affecting Agrobacterium-mediated transformation in Citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep 16:745–753

    Article  CAS  Google Scholar 

  • Hidaka T (1984) Induction of plants from anthers of Trovita orange (Citrus sinensis Osbeck). J Jpn Soc Hortic Sci 53:1–5

    Article  Google Scholar 

  • Hidaka T, Yamada Y, Shichijo T (1979) In vitro differentiation of haploid plants by anther culture in Poncirus trifoliata (L.) Raf. Jpn J Breed 29:248–254

    Google Scholar 

  • Iwanami T, Shimizu T, Ito T, Hirabayashi T (2004) Tolerance to Citrus mosaic virus in transgenic trifoliate orange lines harboring capsid polyprotein gene. Plant Dis 88:865–868

    Article  CAS  Google Scholar 

  • Jarrell DC, Roose ML, Traugh SN, Kupper RS (1992) A genetic map of citrus based on the segregation of isozymes and RFLPs in an intergeneric cross. Theor Appl Genet 84:49–56

    Article  CAS  Google Scholar 

  • Kaneko K, Okafuji Y, Matsumoto O (1995) Production of somatic hybrid plants between Citrus and Poncirus trifoliata by electro-fusion. Bull Yamaguchi Agric Exp Stat 46:73–79

    Google Scholar 

  • Kaneyoshi J, Kobayashi S (1999) Characteristics of transgenic trifoliate orange (Poncirus trifoliata Raf.) possessing the rolC gene of Agrobacterium rhizogenes Ri plasmid. J Jpn Soc Hortic Sci 68:734–738

    Article  CAS  Google Scholar 

  • Kaneyoshi J, Kobayashi S, Shigemoto N, NakamuraY Y, Doi Y (1994) A simple and efficient gene transfer system of trifoliate orange. Plant Cell Rep 13:541–545

    CAS  Google Scholar 

  • Kayim M, Ceccardi TL, Berretta MJG, Barthe GA, Derrick KS (2004) Introduction of a citrus blight-associated gene into Carrizo citrange [Citrus sinensis (L.) Osbc. × Poncirus trifoliata (L.) Raf.] by Agrobacterium-mediated transformation. Plant Cell Rep 23:377–385

    Article  PubMed  CAS  Google Scholar 

  • Kijas JMH, Thomas MR, Fowler JCS, Roose ML (1997) Integration of trinucleotide microsatellites into a linkage map of Citrus. Theor Appl Genet 94:701–706

    Article  CAS  Google Scholar 

  • Kobayashi S, Ohgawara T (1988) Production of somatic hybrid plants through protoplast fusion in citrus. J Agric Rev Quart 22:181–188

    Google Scholar 

  • Kobayashi S, Nakamura Y, Kaneyoshi J, Higo H, Higo K (1996) Transformation of kiwifruit (Actinidia chinensis) and trifoliate orange (Poncirus trifoliata) with a synthetic gene encoding the human epidermal growth factor (hEGF). J Jpn Soc Hortic Sci 64:763–769

    Article  CAS  Google Scholar 

  • Krueger RR, Navarro L (2007) Citrus germplasm resources. In: Khan I (ed) Citrus: genetic, breeding and biotechnology. CABI, Wallingford, UK, pp 45–140

    Chapter  Google Scholar 

  • LaMalfa S, Gentile A, Deng ZN, Domina F (2000) Citrus genetic transformation with a vital reporter gene: expression of green fluorescent protein in Troyer citrange. Ital Hortic 7:17–21

    Google Scholar 

  • Le BV, Ha NT, Hong LTA, Van KTT (1999) High frequency shoot regeneration from trifoliate orange (Poncirus trifoliata L. Raf.) using the thin cell layer method. C R Acad Sci Ser 3(Sci Vie 322):1105–1111

    Google Scholar 

  • Ling P, Yu C, Deng Z, Chen C, Huang S, Wendell MK, Gmitter FG Jr (1999) Citrus genome mapping with AFLP markers. In: Plant and animal genome VII conference, 17–21 Jan 1999, San Diego, CA, USA, P189

    Google Scholar 

  • Ling P, Duncan LW, Deng Z, Dunn D, Xu X, Huang S, Gmitter FG Jr (2000) Inheritance of citrus nematode resistance and its linkage with molecular markers. Theor Appl Genet 101:1010–1017

    Article  Google Scholar 

  • Louzada ES, Grosser JW, Gmitter FG Jr, Nielsen B, Chandler JL (1992) Eight new somatic hybrid citrus rootstocks with potential for improved disease resistance. HortScience 27(9):1033–1036

    Google Scholar 

  • Luro F, Laigret F, Lorieux M, Ollitrault P (1996) Citrus genome mapping with molecular markers: two maps obtained by segregation analysis of progeny of one intergeneric cross. Proc Int Soc Citric 2:862–866

    Google Scholar 

  • Machado MA, Amaral AM, Astua JF, et al (2007) Analysis of citrus transcriptome: CitEST in Brazil. In: Plant and animal genome XV conference, 13–17 Jan 2007, San Diego, CA, USA, p 77

    Google Scholar 

  • Medina-Urrutia V, Lopez-Madera KF, Serrano P, Ananthakrishnan G, Grosser JW, Guo W (2004) New intergeneric somatic hybrids combining amblycarpa mandarin with six trifoliate/trifoliate hybrid selections for lime rootstock improvement. HortScience 39(2):355–360

    CAS  Google Scholar 

  • Mestre PF, Asins MJ, Carbonell EA, Navarro L (1997) New gene(s) involved in the resistance of Poncirus trifoliata (L.) Raf. to citrus tristeza virus. Theor Appl Genet 95:691–695

    Article  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregating analysis: a rapid method to detect markers in specific genomic regions using segregant populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Miller JE, Martiz JGJ, Froneman IJ, Koekemoer PJJ (2003) Potential citrus cultivars in South Africa’s scion and rootstock development pipeline. Proc Int Soc Citric 3:62–65

    Google Scholar 

  • Miranda M, Ikeka F, Endo T, Morigushi T, Omura M (1997) Comparative analysis on the distribution of heterochromatin in Citrus, Poncirus and Fortunella chromosomes. Chrom Res 5:86–92

    Article  PubMed  CAS  Google Scholar 

  • Molinari HBC, Bespalhok JCF, Kobayashi AK, Pereira LFP, Vieira LGE (2004a) Agrobacterium tumefaciens-mediated transformation of Swingle citrumelo (Citrus paradisi Macf. × Poncirus trifoliata L. Raf.) using thin epicotyl sections. Sci Hortic 99:379–385

    Article  CAS  Google Scholar 

  • Molinari HBC, Marur CJ, Bespalhok JCF, Kobayashi AK, Pileggi M, Leite Junior RP, Pereira LFP, Vieira LGE (2004b) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci 167:1375–1381

    Article  CAS  Google Scholar 

  • Moore GA, Jacono CC, Neidigh JL, Lawrence SD, Cline K (1992) Agrobacterium-mediated transformation of citrus stem segments and regeneration of transgenic plants. Plant Cell Rep 11:238–242

    Article  CAS  Google Scholar 

  • Moraes AP, Mirkov TE, Guerra M (2008) Mapping the chromosomes of Poncirus trifoliata Raf. by BAC-FISH. Cytogenet Genom Res 121:277–281

    Article  CAS  Google Scholar 

  • Navarro L, Olivares-Fuster O, Juarez J, Aleza P, Pina JA, Ballester-Olmos JF, Cervera M, Fagoaga C, Duran-Vila N, Pena L (2004) Applications of biotechnology to citrus improvement in Spain. Acta Hortic 632:221–234

    CAS  Google Scholar 

  • Nicotra A (2001) Mandarin-like hybrids of recent interest for fresh consumption. Problems and ways of control. In: Proceedings of China/FAO citrus symposium, 14–17 May 2001, Beijing, Peoples Republic of China, pp 15–24

    Google Scholar 

  • Ohgawara T, Kobayashi S, Ohgawara E, Uchimiya H, Ishii S (1985) Somatic hybrid plant obtained by protoplast fusion between Citrus sinensis and Poncirus trifoliata. Theor Appl Genet 71:1–4

    Article  Google Scholar 

  • Ohgawara T, Kobayashi S, Ishii S, Yoshinaga K, Oiyama I (1991) Fertile fruits obtained by somatic hybridization: navel orange (Citrus sinensis) and Troyer citrange (C. sinensis × Poncirus trifoliata). Theor Appl Genet 81:141–143

    Article  Google Scholar 

  • Ollitrault P, Allent V, Luro F (1996) Production of haploid plants and embryogenic calli of clementine (Citrus reticulata Blanco) after in situ parthenogenesis induced by irradiated pollen. Proc Int Soc Citric 2:913–917

    Google Scholar 

  • Ollitrault P, Vanel F, Froelicher Y, Dambier D (2000) Creation of triploid citrus hybrids by electrofusion of haploid and diploid protoplasts. Acta Hortic 535:191–198

    Google Scholar 

  • Pena L, Cervera M, Juarez J, Ortega C, Pina JA, Duran-Vila N, Navarro L (1995a) High efficiency Agrobacterium-mediated transformation and regeneration of citrus. Plant Sci 104:183–191

    Article  CAS  Google Scholar 

  • Pena L, Cervera M, Juarez J, Navarro A, Pina JA, Duran-Vila N, Navarro L (1995b) Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Rep 14:616–619

    Article  CAS  Google Scholar 

  • Pena L, Martin-Trillo M, Juarez J, Pina JA, Navarro L, Martinez-Zapater JM (2001) Constitutive expression of Arabidopsis LEAFY and APETALA1 genes in citrus reduces their generation time. Nat Biotechnol 19:263–267

    Article  PubMed  CAS  Google Scholar 

  • Pena L, Cervera M, Fagoaga C, Romero J, Ballester A, Soler N, Pons E, Rodríguez A, Peris J, Juarez J, Navarro L (2008) Citrus. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants, vol 5, Transgenic tropical and subtropical fruits and nuts. Wiley-Blackwell, West Sussex, UK, pp 1–61

    Google Scholar 

  • Radhamani J, Chandel KPS (1992) Cryopreservation of embryonic axes of trifoliate orange (Poncirus trifoliata [L.] RAF.). Plant Cell Rep 11(4):372–374

    Article  Google Scholar 

  • Roose ML, Schwarzacher T, Heslop-Harrison JS (1998) The chromosomes of Citrus and Poncirus species and hybrids: Identification of characteristic chromosomes and physical mapping of rDNA loci using in situ hybridization and fluorochrome banding. J Hered 89(1):83–86

    Article  PubMed  CAS  Google Scholar 

  • Roose ML, Feng D, Cheng FS, Tayyar RI, Federici CT, Kupper RS (2000) Mapping the citrus genome. In: Goren R, Goldschmidt EE (eds) Proceedings of international society of horticultural sciences (ISHS), Leuven, Belgium. Acta Hortic 535:25–32

    CAS  Google Scholar 

  • Ruiz C, Asins MJ (2003) Comparison between Poncirus and Citrus genetic linkage maps. Theor Appl Genet 106:826–836

    PubMed  CAS  Google Scholar 

  • Sankar AA, Moore GA (2001) Evaluation of inter-simple sequence repeat analysis for mapping in Citrus and extension of the genetic linkage map. Theor Appl Genet 102:206–214

    Article  CAS  Google Scholar 

  • Siviero A, Cristofani M, Furtado EL, Garcia AAF, Coelho ASG, Machado MA (2006) Identification of QTLs associated with citrus resistance to Phytophthora gummosis. J Appl Genet 47:23–28

    Article  PubMed  Google Scholar 

  • Talon M, Gmitter FG Jr (2008) Citrus genomics. Int J Plant Genom Article ID 528361. doi:10.1155/2008/528361

    Google Scholar 

  • Tan M, Song J, Deng XX (2007) Production of two mandarin trifoliate orange hybrid populations via embryo rescue with verification by SSR analysis. Euphytica 157:155–160

    Article  CAS  Google Scholar 

  • Torres AM, Mau-Lastovicka T, Williams TE, Soost RK (1985) Segregation distortion and linkage of Citrus and Poncirus isozyme genes. J Hered 76:289–294

    CAS  Google Scholar 

  • Tozlu I, Guy CL, Moore GA (1999a) QTL analysis of Na+ and Cl− accumulation related traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and nonsaline environments. Genome 42:692–705

    CAS  Google Scholar 

  • Tozlu I, Guy CL, Moore GA (1999b) QTL analysis of morphological traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and nonsaline environments. Genome 42:1020–1029

    CAS  Google Scholar 

  • Tusa N, Geraci G, Radogna L (1992) New strategies for citrus rootstock improvement by means of protoplast fusion. Proc Int Soc Citric 1:177–179

    Google Scholar 

  • Wang Q, Batuman O, Bar-Joseph M, Gafny R (2000) Cryopreservation of in vitro ‘Troyer’ citrange shoot tips. Proc Int Soc Citric 3:210

    Google Scholar 

  • Weber CA, Moore GA, Deng Z, Gmitter FG Jr (2003) Mapping freeze tolerance quantitative trait loci in a Citrus grandis × Poncirus trifoliata F1 pseudo-testcross using molecular markers. J Am Soc Hortic Sci 128:508–514

    CAS  Google Scholar 

  • Wong WS, Li GG, Ning W, Xu ZF, Hsiao WL, Zhang LY, Li N (2001) Repression of chilling-induced ACC accumulation in transgenic citrus by over-production of antisense 1-aminocyclopropane-1-carboxylate synthase RNA. Plant Sci 161:969–977

    Article  CAS  Google Scholar 

  • Yang ZN, Ye XR, Choi S, Molina J, Moonan F, Wing RA, Roose ML, Mirkov TE (2001) Construction of a 1.2-Mb contig including the cistrus tristeza virus resistance gene locus using a bacterial artificial chromosome library of Poncirus trifoliata (L.) Raf. Genome 44:382–393

    PubMed  CAS  Google Scholar 

  • Yang ZN, Ye XR, Molina J, Roose ML, Mirkov TE (2003) Sequence analysis of a 282-kilobase region surrounding the citrus tristeza virus resistance gene (Ctv) locus in Poncirus trifoliata L. Raf. Plant Physiol 131:482–492

    Article  PubMed  CAS  Google Scholar 

  • Yu C, Huang S, Chen C, Deng Z, Ling P, Gmitter FG (2002) Factors affecting Agrobacterium mediated transformation of sweet orange and citrange. Plant Cell Tiss Org Cult 71:147–155

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaya R. Soneji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soneji, J.R., Rao, M.N. (2011). Poncirus. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20447-0_9

Download citation

Publish with us

Policies and ethics