Random Lines: A Novel Population Set-Based Evolutionary Global Optimization Algorithm

  • İsmet Şahin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6621)


In this paper, we present a new population set-based evolutionary optimization algorithm which aims to find global minima of cost functions. This algorithm creates random lines passing through pairs of points (vectors) in population, fits a quadratic function based on three points on each line, and then applies the crossover operation to extrema of these quadratic functions, and lastly performs the selection operation. We refer to the points determining random lines as parent points and the extremum of a quadratic model as the descendant or mutated point under some conditions. In the crossover operation, some entries of a descendant vector are randomly replaced with the corresponding entries of one parent vector and some other entries of the descendant vector are replaced with the corresponding entries of the other parent vector based on the crossover constant. The above crossover and mutation operations make this algorithm robust and fast converging. One important property of this algorithm is that its robustness in general increases with increasing population size which may become useful when more processing units are available. This algorithm achieves comparable results with the well-known Differential Evolution (DE) algorithm over a wide range of cost functions.


Global Optimization Continuous Variable Optimization Direct Search Methods Evolutionary Computation Random Lines Differential Evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Törn, A., Zilinskas, A.: Global Optimization. Springer, New York (1989)CrossRefzbMATHGoogle Scholar
  2. 2.
    Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: New perspectives on some classical and modern methods. SIAM Review 45(3), 385–482 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hooke, R., Jeeves, T.A.: Direct Search Solution of Numerical and Statistical Problems. Journal of the ACM 8(2), 212–229 (1961)CrossRefzbMATHGoogle Scholar
  4. 4.
    Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. Computer Journal 7(4), 308–313 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ali, M.M., Törn, A.: Population Set-based Global Optimization Algorithms: Some Modifications and Numerical Studies. Computers and Operations Research 31(10), 1703–1725 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Back, T., Schewefel, H.P.: An Overview of Evolutionary Algorithms for parameter optimization. Evolutionary Computation 1(1), 1–23 (1993)CrossRefGoogle Scholar
  7. 7.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, New York (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    Yao, X., Liu, Y., Lin, G.: Evolutionary Programming Made Faster. IEEE Transactions on Evolutionary Computation 3(2), 82–102 (1999)CrossRefGoogle Scholar
  9. 9.
    Back, T., Hammel, U., Schwefel, H.P.: Evolutionary Computation: Comments on the History and Current State. IEEE Transactions on Evolutionary Computation 1(1), 3–17 (1997)CrossRefGoogle Scholar
  10. 10.
    Fogel, D.B.: What Is Evolutionary Computation? IEEE Spectrum 37(2), 28–32 (2000)CrossRefGoogle Scholar
  11. 11.
    Hinterding, R., Michalewicz, Z., Eiben, A.E.: Adaptation in Evolutionary Computation: A Survey. In: IEEE International Conference on Evolutionary Computation, pp. 65–69. IEEE Press, Los Alamitos (1997)Google Scholar
  12. 12.
    Storn, R., Price, K.: Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11(4), 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  14. 14.
    Veenhuis, C.B.: Tree Based Differential Evolution. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 208–219. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)CrossRefGoogle Scholar
  16. 16.
    Montgomery, J., Chen, S.: An Analysis of the Operation of Differential Evolution at High And Low Crossover Rates. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE Press, Los Alamitos (2010)Google Scholar
  17. 17.
    Caponio, A., Neri, F.: Differential Evolution with Noise Analyzer. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekárt, A., Esparcia-Alcázar, A., Farooq, M., Fink, A., Machado, P. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 715–724. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Liu, G., Li, Y.X., He, G.L.: Design of Digital FIR Filters Using Differential Evolution Algorithm Based on Reserved Genes. In: IEEE Congress on Evolutionary Computation, pp. 1–7. IEEE Press, Los Alamitos (2010)Google Scholar
  19. 19.
    Das, S., Konar, A.: Automatic Image Pixel Clustering with an Improved Differential Evolution. Applied Soft Computing 9(1), 226–236 (2009)CrossRefGoogle Scholar
  20. 20.
    Shi, Y., Teng, H., Li, Z.: Cooperative Co-evolutionary Differential Evolution for Function Optimization. In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3611, pp. 1080–1088. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolution. IEEE Transactions on Evolutionary Computation 12(1), 64–79 (2008)CrossRefGoogle Scholar
  22. 22.
    Kundu, D., Suresh, K., Ghosh, S., Das, S., Abraham, A., Badr, Y.: Automatic Clustering Using a Synergy of Genetic Algorithm and Multi-objective Differential Evolution. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 177–186. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Abbass, H.A., Sarker, R., Newton, C.: PDE: a Pareto-frontier Differential Evolution Approach for Multi-objective Optimization Problems. In: Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, South Korea, vol. 2, pp. 971–978. IEEE Press, Los Alamitos (2001)Google Scholar
  24. 24.
    Vesterstroem, J., Thomsen, R.: A Comparative Study of Differential Evolution, Particle Swarm Optimization, and Evolutionary Algorithms on Numerical Benchmark Problems. Proc. Congr. Evol. Comput. 2, 1980–1987 (2004)Google Scholar
  25. 25.
    Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Inc., Englewood Cliffs (1983)zbMATHGoogle Scholar
  26. 26.
    More, J.J., Thuente, D.J.: Line Search Algorithms with Guaranteed Sufficient Decrease. ACM Transactions on Mathematical Software 20, 286–307 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Mohan, C., Shanker, K.: A Controlled Random Search Technique for Global Optimization Using Quadratic Approximation. Asia-Pacific Journal of Operational Research 11, 93–101 (1994)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Thangaraj, R., Pant, M., Abraham, A.: New Mutation Schemes for Differential Algorithm and Their Application to the Optimization of Directional Over-current Relay Settings. Applied Mathematics and Computation 216, 532–544 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Liu, J., Lampinen, J.: A Fuzzy Adaptive Differential Evolution Algorithm. Soft Computing-A Fusion of Foundations, Methodologies and Applications 9(6), 448–462 (2005)zbMATHGoogle Scholar
  30. 30.
    Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Selfadapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)CrossRefGoogle Scholar
  31. 31.
    Storn, R.: On the Usage of Differential Evolution for Function Optimization. In: Proc. Biennial Conf. North Amer. Fuzzy Inf. Process. Soc., pp. 519–523 (1996)Google Scholar
  32. 32.
    More, J.J., Garbow, B.S., Hillstrom, K.E.: Testing Unconstrained Optimization Software. ACM Transactions on Mathematical Software 7(1), 17–41 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems. Journal of Global Optimization 31, 635–672 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Pierre, D.A.: Optimization Theory with Applications. Dover Publications Inc., Mineola (1969)zbMATHGoogle Scholar
  35. 35.
    Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation 8(1), 3–30 (1998)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • İsmet Şahin
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations