EuroGP 2011: Genetic Programming pp 97-107

# Random Lines: A Novel Population Set-Based Evolutionary Global Optimization Algorithm

• İsmet Şahin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6621)

## Abstract

In this paper, we present a new population set-based evolutionary optimization algorithm which aims to find global minima of cost functions. This algorithm creates random lines passing through pairs of points (vectors) in population, fits a quadratic function based on three points on each line, and then applies the crossover operation to extrema of these quadratic functions, and lastly performs the selection operation. We refer to the points determining random lines as parent points and the extremum of a quadratic model as the descendant or mutated point under some conditions. In the crossover operation, some entries of a descendant vector are randomly replaced with the corresponding entries of one parent vector and some other entries of the descendant vector are replaced with the corresponding entries of the other parent vector based on the crossover constant. The above crossover and mutation operations make this algorithm robust and fast converging. One important property of this algorithm is that its robustness in general increases with increasing population size which may become useful when more processing units are available. This algorithm achieves comparable results with the well-known Differential Evolution (DE) algorithm over a wide range of cost functions.

## Keywords

Global Optimization Continuous Variable Optimization Direct Search Methods Evolutionary Computation Random Lines Differential Evolution

## References

1. 1.
Törn, A., Zilinskas, A.: Global Optimization. Springer, New York (1989)
2. 2.
Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: New perspectives on some classical and modern methods. SIAM Review 45(3), 385–482 (2003)
3. 3.
Hooke, R., Jeeves, T.A.: Direct Search Solution of Numerical and Statistical Problems. Journal of the ACM 8(2), 212–229 (1961)
4. 4.
Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. Computer Journal 7(4), 308–313 (1965)
5. 5.
Ali, M.M., Törn, A.: Population Set-based Global Optimization Algorithms: Some Modifications and Numerical Studies. Computers and Operations Research 31(10), 1703–1725 (2004)
6. 6.
Back, T., Schewefel, H.P.: An Overview of Evolutionary Algorithms for parameter optimization. Evolutionary Computation 1(1), 1–23 (1993)
7. 7.
Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, New York (2003)
8. 8.
Yao, X., Liu, Y., Lin, G.: Evolutionary Programming Made Faster. IEEE Transactions on Evolutionary Computation 3(2), 82–102 (1999)
9. 9.
Back, T., Hammel, U., Schwefel, H.P.: Evolutionary Computation: Comments on the History and Current State. IEEE Transactions on Evolutionary Computation 1(1), 3–17 (1997)
10. 10.
Fogel, D.B.: What Is Evolutionary Computation? IEEE Spectrum 37(2), 28–32 (2000)
11. 11.
Hinterding, R., Michalewicz, Z., Eiben, A.E.: Adaptation in Evolutionary Computation: A Survey. In: IEEE International Conference on Evolutionary Computation, pp. 65–69. IEEE Press, Los Alamitos (1997)Google Scholar
12. 12.
Storn, R., Price, K.: Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11(4), 341–359 (1997)
13. 13.
Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Heidelberg (2005)
14. 14.
Veenhuis, C.B.: Tree Based Differential Evolution. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 208–219. Springer, Heidelberg (2009)
15. 15.
Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)
16. 16.
Montgomery, J., Chen, S.: An Analysis of the Operation of Differential Evolution at High And Low Crossover Rates. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE Press, Los Alamitos (2010)Google Scholar
17. 17.
Caponio, A., Neri, F.: Differential Evolution with Noise Analyzer. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekárt, A., Esparcia-Alcázar, A., Farooq, M., Fink, A., Machado, P. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 715–724. Springer, Heidelberg (2009)
18. 18.
Liu, G., Li, Y.X., He, G.L.: Design of Digital FIR Filters Using Differential Evolution Algorithm Based on Reserved Genes. In: IEEE Congress on Evolutionary Computation, pp. 1–7. IEEE Press, Los Alamitos (2010)Google Scholar
19. 19.
Das, S., Konar, A.: Automatic Image Pixel Clustering with an Improved Differential Evolution. Applied Soft Computing 9(1), 226–236 (2009)
20. 20.
Shi, Y., Teng, H., Li, Z.: Cooperative Co-evolutionary Differential Evolution for Function Optimization. In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3611, pp. 1080–1088. Springer, Heidelberg (2005)
21. 21.
Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolution. IEEE Transactions on Evolutionary Computation 12(1), 64–79 (2008)
22. 22.
Kundu, D., Suresh, K., Ghosh, S., Das, S., Abraham, A., Badr, Y.: Automatic Clustering Using a Synergy of Genetic Algorithm and Multi-objective Differential Evolution. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 177–186. Springer, Heidelberg (2009)
23. 23.
Abbass, H.A., Sarker, R., Newton, C.: PDE: a Pareto-frontier Differential Evolution Approach for Multi-objective Optimization Problems. In: Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, South Korea, vol. 2, pp. 971–978. IEEE Press, Los Alamitos (2001)Google Scholar
24. 24.
Vesterstroem, J., Thomsen, R.: A Comparative Study of Differential Evolution, Particle Swarm Optimization, and Evolutionary Algorithms on Numerical Benchmark Problems. Proc. Congr. Evol. Comput. 2, 1980–1987 (2004)Google Scholar
25. 25.
Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Inc., Englewood Cliffs (1983)
26. 26.
More, J.J., Thuente, D.J.: Line Search Algorithms with Guaranteed Sufficient Decrease. ACM Transactions on Mathematical Software 20, 286–307 (1992)
27. 27.
Mohan, C., Shanker, K.: A Controlled Random Search Technique for Global Optimization Using Quadratic Approximation. Asia-Pacific Journal of Operational Research 11, 93–101 (1994)
28. 28.
Thangaraj, R., Pant, M., Abraham, A.: New Mutation Schemes for Differential Algorithm and Their Application to the Optimization of Directional Over-current Relay Settings. Applied Mathematics and Computation 216, 532–544 (2010)
29. 29.
Liu, J., Lampinen, J.: A Fuzzy Adaptive Differential Evolution Algorithm. Soft Computing-A Fusion of Foundations, Methodologies and Applications 9(6), 448–462 (2005)
30. 30.
Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Selfadapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)
31. 31.
Storn, R.: On the Usage of Differential Evolution for Function Optimization. In: Proc. Biennial Conf. North Amer. Fuzzy Inf. Process. Soc., pp. 519–523 (1996)Google Scholar
32. 32.
More, J.J., Garbow, B.S., Hillstrom, K.E.: Testing Unconstrained Optimization Software. ACM Transactions on Mathematical Software 7(1), 17–41 (1981)
33. 33.
Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems. Journal of Global Optimization 31, 635–672 (2005)
34. 34.
Pierre, D.A.: Optimization Theory with Applications. Dover Publications Inc., Mineola (1969)
35. 35.
Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation 8(1), 3–30 (1998)