Skip to main content

Evolving Cell Array Configurations Using CGP

  • Conference paper
Genetic Programming (EuroGP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6621))

Included in the following conference series:

Abstract

A cell array is a proposed type of custom FPGA, where digital circuits can be formed from interconnected configurable cells. In this paper we have presented a means by which CGP might be adapted to evolve configurations of a proposed cell array. As part of doing so, we have suggested an additional genetic operator that exploits modularity by copying sections of the genome within a solution, and investigated its efficacy. Additionally, we have investigated applying selection pressure for parsimony during functional evolution, rather than in a subsequent stage as proposed in other work. Our results show that solutions to benchmark problems can be evolved with a good degree of efficiency, and that compact solutions can be found with no significant impact on the required number of circuit evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Samie, M., Dragffy, G., Popescu, A., Pipe, T., Melhuish, C.: Prokaryotic bio-inspired model for embryonics. In: NASA/ESA Conference on Adaptive Hardware and Systems, pp. 163–170 (2009)

    Google Scholar 

  2. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Sekanina, L.: Evolutionary design of gate-level polymorphic digital circuits. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 185–194. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Bremner, P., Samie, M., Dragffy, G., Pipe, T., Walker, J., Tyrrell, A.: Evolving digital circuits using complex building blocks. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds.) ICES 2010. LNCS, vol. 6274, pp. 37–48. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Koza, J.: Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  6. Dessi, A., Giani, A., Starita, A.: An analysis of automatic subroutine discovery in genetic programming. In: GECCO, pp. 996–1001 (1999)

    Google Scholar 

  7. Rosca, J.: Genetic programming exploratory power and the discovery of functions. In: Proceedings of the Fourth Annual Conference on Evolutionary Programming, pp. 719–736 (1995)

    Google Scholar 

  8. Walker, J.A., Miller, J.F.: The automatic acquisition, evolution and reuse of modules in cartesian genetic programming. IEEE Trans. Evolutionary Computation (4), 397–417 (2008)

    Google Scholar 

  9. Vassilev, V.K., Job, D., Miller, J.F.: Towards the automatic design of more efficient digital circuits. In: EH 2000: Proceedings of the 2nd NASA/DoD workshop on Evolvable Hardware, p. 151 (2000)

    Google Scholar 

  10. Hilder, J., Walker, J., Tyrrell, A.: Use of a multi-objective fitness function to improve cartesian genetic programming circuits. In: 2010 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pp. 179–185 (2010)

    Google Scholar 

  11. Gajda, Z., Sekanina, L.: An efficient selection strategy for digital circuit evolution. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds.) ICES 2010. LNCS, vol. 6274, pp. 13–24. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Yu, T., Miller, J.F.: Neutrality and the evolvability of boolean function landscape. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 204–217. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic programming. IEEE Transactions on Evolutionary Computation (2), 167–174 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bremner, P., Samie, M., Dragffy, G., Pipe, A.G., Liu, Y. (2011). Evolving Cell Array Configurations Using CGP. In: Silva, S., Foster, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds) Genetic Programming. EuroGP 2011. Lecture Notes in Computer Science, vol 6621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20407-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20407-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20406-7

  • Online ISBN: 978-3-642-20407-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics