Evolving Cell Array Configurations Using CGP

  • Paul Bremner
  • Mohammad Samie
  • Gabriel Dragffy
  • Anthony. G. Pipe
  • Yang Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6621)


A cell array is a proposed type of custom FPGA, where digital circuits can be formed from interconnected configurable cells. In this paper we have presented a means by which CGP might be adapted to evolve configurations of a proposed cell array. As part of doing so, we have suggested an additional genetic operator that exploits modularity by copying sections of the genome within a solution, and investigated its efficacy. Additionally, we have investigated applying selection pressure for parsimony during functional evolution, rather than in a subsequent stage as proposed in other work. Our results show that solutions to benchmark problems can be evolved with a good degree of efficiency, and that compact solutions can be found with no significant impact on the required number of circuit evaluations.


Genetic Programming Logic Gate Benchmark Problem Digital Circuit Node Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Samie, M., Dragffy, G., Popescu, A., Pipe, T., Melhuish, C.: Prokaryotic bio-inspired model for embryonics. In: NASA/ESA Conference on Adaptive Hardware and Systems, pp. 163–170 (2009)Google Scholar
  2. 2.
    Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Sekanina, L.: Evolutionary design of gate-level polymorphic digital circuits. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 185–194. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Bremner, P., Samie, M., Dragffy, G., Pipe, T., Walker, J., Tyrrell, A.: Evolving digital circuits using complex building blocks. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds.) ICES 2010. LNCS, vol. 6274, pp. 37–48. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Koza, J.: Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge (1996)zbMATHGoogle Scholar
  6. 6.
    Dessi, A., Giani, A., Starita, A.: An analysis of automatic subroutine discovery in genetic programming. In: GECCO, pp. 996–1001 (1999)Google Scholar
  7. 7.
    Rosca, J.: Genetic programming exploratory power and the discovery of functions. In: Proceedings of the Fourth Annual Conference on Evolutionary Programming, pp. 719–736 (1995)Google Scholar
  8. 8.
    Walker, J.A., Miller, J.F.: The automatic acquisition, evolution and reuse of modules in cartesian genetic programming. IEEE Trans. Evolutionary Computation (4), 397–417 (2008)Google Scholar
  9. 9.
    Vassilev, V.K., Job, D., Miller, J.F.: Towards the automatic design of more efficient digital circuits. In: EH 2000: Proceedings of the 2nd NASA/DoD workshop on Evolvable Hardware, p. 151 (2000)Google Scholar
  10. 10.
    Hilder, J., Walker, J., Tyrrell, A.: Use of a multi-objective fitness function to improve cartesian genetic programming circuits. In: 2010 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pp. 179–185 (2010)Google Scholar
  11. 11.
    Gajda, Z., Sekanina, L.: An efficient selection strategy for digital circuit evolution. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds.) ICES 2010. LNCS, vol. 6274, pp. 13–24. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Yu, T., Miller, J.F.: Neutrality and the evolvability of boolean function landscape. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 204–217. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic programming. IEEE Transactions on Evolutionary Computation (2), 167–174 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Paul Bremner
    • 1
  • Mohammad Samie
    • 1
  • Gabriel Dragffy
    • 1
  • Anthony. G. Pipe
    • 1
  • Yang Liu
    • 2
  1. 1.Bristol Robotics LaboratoryUniversity of the West of EnglandBristolUK
  2. 2.Intelligent Systems Group, Department of ElectronicsUniversity of YorkHeslington, YorkUK

Personalised recommendations