Advertisement

Evolution of a Brain-Computer Interface Mouse via Genetic Programming

  • Riccardo Poli
  • Mathew Salvaris
  • Caterina Cinel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6621)

Abstract

We propose the use of genetic programming as a means to evolve brain-computer interfaces for mouse control. Our objective is to synthesise complete systems, which analyse electroencephalographic signals and directly transform them into pointer movements, almost from scratch, the only input provided by us in the process being the set of visual stimuli to be used to generate recognisable brain activity. Experimental results with our GP approach are very promising and compare favourably with those produced by support vector machines.

Keywords

Genetic Programming Brain-Computer Interfaces Mouse Support-vector Machines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beverina, F., Palmas, G., Silvoni, S., Piccione, F., Giove, S.: User adaptive BCIs: SSVEP and P300 based interfaces. PsychNology Journal 1(4), 331–354 (2003)Google Scholar
  2. 2.
    Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., Perelmouter, J., Taub, E., Flor, H.: A spelling device for the paralysed. Nature 398(6725), 297–298 (1999)CrossRefGoogle Scholar
  3. 3.
    Citi, L., Poli, R., Cinel, C., Sepulveda, F.: P300-based BCI mouse with genetically-optimized analogue control. IEEE Transactions on Neural Systems and Rehabilitation Egineering 16(1), 51–61 (2008)CrossRefGoogle Scholar
  4. 4.
    Donoghue, J.: Connecting cortex to machines: recent advances in brain interfaces. Nature Neuroscience 5, 1085–1088 (2002)CrossRefGoogle Scholar
  5. 5.
    Farwell, L.A., Donchin, E.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology 70(6), 510–523 (1988)CrossRefGoogle Scholar
  6. 6.
    Koza, J.R.: Human-competitive results produced by genetic programming. Genetic Programming and Evolvable Machines 11(3/4), 251–284 (2010)CrossRefGoogle Scholar
  7. 7.
    Pfurtscheller, G., Flotzinger, D., Kalcher, J.: Brain-computer interface: a new communication device for handicapped persons. Journal of Microcomputer Applications 16(3), 293–299 (1993)CrossRefGoogle Scholar
  8. 8.
    Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming (2008), Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk (With contributions by J. R. Koza)
  9. 9.
    Polikoff, J.B., Bunnell, H.T., Borkowski Jr., W.J.: Toward a P300-based computer interface. In: Proc. Rehab. Eng. and Assistive Technology Society of North America (RESNA 1995), pp. 178–180. Resna Press, Arlington (1995)Google Scholar
  10. 10.
    Salvaris, M., Cinel, C., Poli, R., Citi, L., Sepulveda, F.: Exploring multiple protocols for a brain-computer interface mouse. In: Proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Buenos Aires, September 2010, pp. 4189–4192 (2010)Google Scholar
  11. 11.
    Wolpaw, J.R., McFarland, D.J.: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proceedings of the National Academy of Sciences 101(51), 17849–17854 (2004)CrossRefGoogle Scholar
  12. 12.
    Wolpaw, J.R., McFarland, D.J., Neat, G.W., Forneris, C.A.: An EEG-based brain-computer interface for cursor control. Electroencephalography and Clinical Neurophysiology 78(3), 252–259 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Riccardo Poli
    • 1
  • Mathew Salvaris
    • 1
  • Caterina Cinel
    • 1
  1. 1.School of Computer Science and Electronic EngineeringUniversity of EssexColchesterUK

Personalised recommendations