A Peer-to-Peer Approach to Genetic Programming

  • Juan Luis Jiménez Laredo
  • Daniel Lombraña González
  • Francisco Fernández de Vega
  • Maribel García Arenas
  • Juan Julián Merelo Guervós
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6621)


This paper proposes a fine-grained parallelization of the Genetic Programming paradigm (GP) using the Evolvable Agent model (EvAg) The algorithm is decentralized in order to take full-advantage of a massively parallel Peer-to-Peer infrastructure. In this context, GP is particularly demanding due to its high requirements of computational power. To assess the viability of the approach, the EvAg model has been empirically analyzed in a simulated Peer-to-Peer environment where experiments were conducted on two well-known GP problems. Results show that the spatially structured nature of the algorithm is able to yield a good quality in the solutions. Additionally, parallelization improves times to solution by several orders of magnitude.


Particle Swarm Optimization Genetic Program Canonical Approach Complex Network Structure Thread Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bánhelyi, B., Biazzini, M., Montresor, A., Jelasity, M.: Peer-to-peer optimization in large unreliable networks with branch-and-bound and particle swarms. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 87–92. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Biazzini, M., Montresor, A.: Gossiping differential evolution: a decentralized heuristic for function optimization in p2p networks. In: Proceedings of the 16th International Conference on Parallel and Distributed Systems (ICPADS 2010) (December 2010)Google Scholar
  3. 3.
    Crawley, M.J.: Statistics, An Introduction using R. Wiley, Chichester (2007)zbMATHGoogle Scholar
  4. 4.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Fernandez, F., Spezzano, G., Tomassini, M., Vanneschi, L.: Parallel genetic programming. In: Alba, E. (ed.) Parallel Metaheuristics, Parallel and Distributed Computing, ch. 6, pp. 127–153. Wiley-Interscience, Hoboken (2005)Google Scholar
  6. 6.
    Folino, G., Spezzano, G.: P-cage: An environment for evolutionary computation in peer-to-peer systems. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 341–350. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms behaviour: a case study on the CEC 2005 special session on real parameter optimization. Journal of Heuristics 15(6), 617–644 (2009)CrossRefzbMATHGoogle Scholar
  8. 8.
    The Gnutella Developer Forum GDF. The annotated gnutella protocol specification v0.4 (2001)Google Scholar
  9. 9.
    Jelasity, M., van Steen, M.: Large-scale newscast computing on the Internet. Technical Report IR-503, Vrije Universiteit Amsterdam, Department of Computer Science, Amsterdam, The Netherlands (October 2002)Google Scholar
  10. 10.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  11. 11.
    Laredo, J.L.J., Castillo, P.A., Mora, A.M., Merelo, J.J.: Exploring population structures for locally concurrent and massively parallel evolutionary algorithms. In: IEEE Congress on Evolutionary Computation (CEC 2008), WCCI 2008 Proceedings, pp. 2610–2617. IEEE Press, Hong Kong (2008)Google Scholar
  12. 12.
    Laredo, J.L.J., Eiben, A.E., van Steen, M., Guervós, J.J.M.: Evag: a scalable peer-to-peer evolutionary algorithm. Genetic Programming and Evolvable Machines 11(2), 227–246 (2010)CrossRefGoogle Scholar
  13. 13.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content addressable network. In: ACM SIGCOMM, pp. 161–172 (2001)Google Scholar
  14. 14.
    Scriven, I., Lewis, A., Mostaghim, S.: Dynamic search initialisation strategies for multi-objective optimisation in peer-to-peer networks. In: CEC 2009: Proceedings of the Eleventh conference on Congress on Evolutionary Computation, Piscataway, NJ, USA, pp. 1515–1522. IEEE Press, Los Alamitos (2009)CrossRefGoogle Scholar
  15. 15.
    Steinmetz, R., Wehrle, K.: What is this peer-to-peer about. In: Steinmetz, R., Wehrle, K. (eds.) Peer-to-Peer Systems and Applications. LNCS, vol. 3485, pp. 9–16. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Trujillo, L., Olague, G.: Synthesis of interest point detectors through genetic programming. In: Cattolico, M. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2006, Seattle, Washington, USA, July 8-12, vol. 1, pp. 887–894. ACM, New York (2006)Google Scholar
  17. 17.
    Voulgaris, S., Jelasity, M., van Steen, M.: Agents and Peer-to-Peer Computing. In: Moro, G., Sartori, C., Singh, M.P. (eds.) AP2PC 2003. LNCS (LNAI), vol. 2872, pp. 47–58. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ”small-world” networks. Nature 393, 440–442 (1998)CrossRefzbMATHGoogle Scholar
  19. 19.
    Wickramasinghe, W.R.M.U.K., van Steen, M., Eiben, A.E.: Peer-to-peer evolutionary algorithms with adaptive autonomous selection. In: GECCO 2007, pp. 1460–1467. ACM Press, New York (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Juan Luis Jiménez Laredo
    • 1
  • Daniel Lombraña González
    • 2
  • Francisco Fernández de Vega
    • 2
  • Maribel García Arenas
    • 1
  • Juan Julián Merelo Guervós
    • 1
  1. 1.ATC-ETSIITUniversity of GranadaGranadaSpain
  2. 2.University of ExtremaduraMéridaSpain

Personalised recommendations