Subjective Evaluation of Specular Appearance for Multiple Observations Using Projector-Based Appearance Reproduction

  • Mayu Yokoya
  • Shoji Yamamoto
  • Yasuki Yamauchi
  • Satoshi Yamamoto
  • Osama Ouda
  • Toshiya Nakaguchi
  • Norimichi Tsumura
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6626)


This paper presents the subjective evaluations of multiple observers as part of an investigation into the relationship between CG parameters of digital mockups and visual sensibility. In our experiments, the specular appearance of CG imagery is reproduced on an actual mockup using a projector-camera system. The specular intensity and position are evaluated in terms of magnitude and inauthenticity. For the specular intensity evaluation, it was found that changes to specular intensity in the CG parameters were equal to the changes in the brightness sensibility of the object viewed. Furthermore, the results of inauthenticity evaluations clarified the limitations of the viewpoint range. The specular appearance from the 60° viewpoint gave observers the impression that the form and position of the specular reflection were inauthentic. Therefore, it was determined that the control of appearance in our digital mockup was only suitable for observations within the range from -45° to 45°.


Specular appearance subjective evaluation projector-camera system digital mockup 


  1. 1.
    Weiser, M.: The computer for the 21st century. Scientific American 272(3), 78–89 (1995)Google Scholar
  2. 2.
    Foley, J.: Computer graphics: principles and practice. Addison-Wesley Professional, Reading (1995)Google Scholar
  3. 3.
    Beyer, H., Holtzblatt, K.: Contextual design. Interactions 6(1), 32–42 (1999)CrossRefGoogle Scholar
  4. 4.
    Pastoor, S., Wöpking, M.: 3-D displays: A review of current technologies. Displays 17(2), 100–110 (1997)CrossRefGoogle Scholar
  5. 5.
    Jones, A., McDowall, I., Yamada, H., Bolas, M., Debevec, P.: Rendering for an interactive 360 light field display. In: ACM SIGGRAPH 2007 Emerging Technologies, p. 13. ACM, New York (2007)Google Scholar
  6. 6.
    Lantz, E.: The future of virtual reality: head mounted displays versus spatially immersive displays (panel). In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 485–486. ACM, New York (1996)Google Scholar
  7. 7.
    Hiller, J., Lipson, H.: Tunable digital material properties for 3D voxel printers. Rapid Prototyping Journal 16(4), 241–247 (2010)CrossRefGoogle Scholar
  8. 8.
    Fechner, G., Adler, H., Howes, D., Boring, E.: Elements of psychophysics (1966)Google Scholar
  9. 9.
    Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., Fuchs, H.: The office of the future: A unified approach to image-based modeling and spatially immersive displays. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 179–188. ACM, New York (1998)Google Scholar
  10. 10.
    Kruger, W., Bohn, C., Frohlich, B., Schuth, H., Strauss, W., Wesche, G.: The responsive workbench: A virtual work environment. Computer 28(7), 42–48 (2002)CrossRefGoogle Scholar
  11. 11.
    Pinhanez, C., Kjeldsen, R., Levas, A., Pingali, G., Podlaseck, M., Sukaviriya, N.: Applications of steerable projector-camera systems. In: Proceedings of the IEEE International Workshop on Projector-Camera Systems at ICCV 2003 (2003), CiteseerGoogle Scholar
  12. 12.
    Yoshida, T., Horii, C., Sato, K.: A virtual color reconstruction system for real heritage with light projection. In: Proceedings of VSMM, pp. 161–168 (2003)Google Scholar
  13. 13.
    Grossberg, M., Peri, H., Nayar, S., Belhumeur, P.: Making one object look like another: Controlling appearance using a projector-camera system. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 1. IEEE, Los Alamitos (2004)Google Scholar
  14. 14.
    Amano, T., Kato, H.: Appearance control by projector camera feedback for visually impaired. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 57–63. IEEE, Los Alamitos (2010)Google Scholar
  15. 15.
    Mukaigawa, Y., Nishiyama, M., Shakunaga, T.: Realization of virtual photometric environment by photometric pattern projection. In: Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, 2003, vol. 1, pp. 435–440. IEEE, Los Alamitos (2003)Google Scholar
  16. 16.
    Konieczny, J., Meyer, G.: Material and color design using projectors. In: CGIV 2006: Third European Conference on Colour in Graphics, Imaging, and Vision, pp. 438–442. Citeseer (2006)Google Scholar
  17. 17.
    Raskar, R., Welch, G., Low, K., Bandyopadhyay, D.: Shader lamps: Animating real objects with image-based illumination. In: Rendering Techniques 2001: Proceedings of the Eurographics Workshop, London, United Kingdom, June 25-27, p. 89. Springer, Wien (2001)CrossRefGoogle Scholar
  18. 18.
    Yamamoto, S., Tsuruse, M., Takase, K., Tsumura, N., Nakaguchi, T., Miyake, Y.: Real-Time Control of Appearance on the Object by using High Luminance PC Projector and Graphics Hardware. In: The 13th Color Imaging Conference, Scottsdale, USA (2005)Google Scholar
  19. 19.
    Kamimigaki, S., Yamamoto, S., Tsumura, N., Nakaguchi, T., Miyake, Y.: Real reproducing of 3D appearance with multi-projectors and cameras. In: The 17th Color Imaging Conference (2009)Google Scholar
  20. 20.
    Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: ICCV, p. 666. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  21. 21.
    Zhang, S., Huang, P.: Novel method for structured light system calibration. Optical Engineering 45, 083601 (2006)CrossRefGoogle Scholar
  22. 22.
    Phong, B.: Illumination for computer generated pictures. Communications of the ACM 18(6), 311–317 (1975)CrossRefGoogle Scholar
  23. 23.
    Torrance, K., Sparrow, E.: Theory for off-specular reflection from roughened surfaces. Journal of the Optical Society of America 57(9), 1105–1114 (1967)CrossRefGoogle Scholar
  24. 24.
    Ward, G.: Measuring and modeling anisotropic reflection. In: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, pp. 265–272. ACM, New York (1992)Google Scholar
  25. 25.
    Torgerson, W., Social Science Research Council (US). Committee on Scaling Theory and Methods: Theory and methods of scaling, vol. 1967. Wiley, New York (1958)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mayu Yokoya
    • 1
  • Shoji Yamamoto
    • 2
  • Yasuki Yamauchi
    • 3
  • Satoshi Yamamoto
    • 4
  • Osama Ouda
    • 5
  • Toshiya Nakaguchi
    • 6
  • Norimichi Tsumura
    • 1
    • 5
  1. 1.Department of Information & Image ScienceChiba UniversityJapan
  2. 2.Tokyo Metropolitan College of Industrial TechnologyJapan
  3. 3.Graduate School of Yamagata UniversityJapan
  4. 4.Graduate School of MedicineChiba UniversityJapan
  5. 5.Graduate School of Advanced Integration ScienceChiba UniversityJapan
  6. 6.Graduate School of EngineeringChiba UniversityJapan

Personalised recommendations