Region-Based Annotation of Digital Photographs
Conference paper
Abstract
We propose a region-based method for the annotation of outdoor photographs. First, images are oversegmented using the normalized cut algorithm. Each resulting region is described by color and texture features, and is then classified by a multi-class Support Vector Machine into seven classes: sky, vegetation, snow, water, ground, street, and sand. Finally, a rejection option is applied to discard those regions for which the classifier is not confident enough. For training and evaluation we used more than 12,000 images taken from the LabelMe project.
Keywords
Support Vector Machine Input Image Local Binary Pattern Image Annotation Automatic Image Annotation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Download
to read the full conference paper text
References
- 1.Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recognition 37(9), 1757–1771 (2004)CrossRefGoogle Scholar
- 2.Cheng, H., Wang, R.: Semantic modeling of natural scenes based on contextual Bayesian networks. Pattern Recognition 43(12), 4042–4054 (2010)CrossRefMATHGoogle Scholar
- 3.Ciocca, G., Cusano, C., Gasparini, F., Schettini, R.: Content aware image enhancement. In: Basili, R., Pazienza, M.T. (eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, pp. 686–697. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 4.Cooper, T.: Color segmentation as an aid to white balancing for digital still cameras, 4300, 164–171 (2000)Google Scholar
- 5.Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297 (1995)MATHGoogle Scholar
- 6.Cusano, C., Ciocca, G., Schettini, R.: Image annotation using SVM. In: Proc. of Internet Imaging V. SPIE, vol. 5304, pp. 330–338 (2004)Google Scholar
- 7.Cusano, C., Gasparini, F., Schettini, R.: Image annotation for adaptive enhancement of uncalibrated color images. In: Bres, S., Laurini, R. (eds.) VISUAL 2005. LNCS, vol. 3736, pp. 216–225. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 8.Fredembach, C., Estrada, F., Süsstrunk, S.: Memory colour segmentation and classification using class-specific eigenregions. Journal of the Society for Information Display 17(11), 921–931 (2009)CrossRefGoogle Scholar
- 9.Gasparini, F., Schettini, R.: Color balancing of digital photos using simple image statistics. Pattern Recognition 37(6), 1201–1217 (2004)CrossRefGoogle Scholar
- 10.Gijsenij, A., Gevers, T.: Color constancy using image regions. In: IEEE International Conference on Image Processing, vol. 3, pp. 501–504 (2007) Google Scholar
- 11.Guillaumin, M., Mensink, T., Verbeek, J., Schmid, C.: Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation. In: IEEE 12th International Conference on Computer Vision, pp. 309–316 (2010) Google Scholar
- 12.Jeon, J., Lavrenko, V., Manmatha, R.: Automatic image annotation and retrieval using cross-media relevance models. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, pp. 119–126 (2003)Google Scholar
- 13.Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. International Journal of Computer Vision 43, 7–27 (2001)CrossRefMATHGoogle Scholar
- 14.Millet, C., Bloch, I., Hede, P., Moellic, P.: Using relative spatial relationships to improve individual region recognition. In: European Workshop on the Integration of Knowledge, Semantics and Digital Media Technologies, EWIMT, vol. 5, pp. 119–126 (2005) Google Scholar
- 15.Ojala, T., Pietikäainen, M., Mäaenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)CrossRefGoogle Scholar
- 16.Rui, X., Li, M., Li, Z., Ma, W., Yu, N.: Bipartite graph reinforcement model for web image annotation. In: Proceedings of the 15th International Conference on Multimedia, pp. 585–594 (2007) Google Scholar
- 17.Russell, B., Torralba, A., Murphy, K., Freeman, W.: LabelMe: a database and webbased tool for image annotation. International Journal of Computer Vision 77(1), 157–173 (2008)CrossRefGoogle Scholar
- 18.Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)CrossRefGoogle Scholar
- 19.Tsai, C., Hung, C.: Automatically annotating images with keywords: A review of image annotation systems. Recent Patents on Computer Science 1(1), 55–68 (2008)MathSciNetCrossRefGoogle Scholar
- 20.Wang, C., Jing, F., Zhang, L., Zhang, H.: Content-based image annotation refinement. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar
- 21.Van de Weijer, J., Gevers, T., Bagdanov, A.: Boosting color saliency in image feature detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(1), 150–156 (2006)CrossRefGoogle Scholar
- 22.Wu, T., Lin, C., Weng, R.: Probability estimates for multi-class classification by pairwise coupling. The Journal of Machine Learning Research 5, 975–1005 (2004)MathSciNetMATHGoogle Scholar
- 23.Yuan, J., Li, J., Zhang, B.: Exploiting spatial context constraints for automatic image region annotation. In: Proceedings of the 15th International Conference on Multimedia, pp. 595–604 (2007)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2011