Color Imaging Arithmetic: Physics ∪ Math > Physics + Math

  • Gaurav Sharma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6626)

Abstract

Color imaging devices for capture, display, and user interaction commonly form the physical interface by which we connect to the digital cyber-world. Because these devices bridge the physical and the electronic worlds, elegant and effective solutions to problems in color imaging can often be found by the synergistic combination of physical intuition with the mathematical tools of signal and image processing. In this paper, we support this claim using case studies drawn from our past research in color imaging. For each of the illustrative examples, we highlight how the blend of physical insight and mathematical modeling, offer in the combination, advantages significantly greater than would be estimated as the sum of the individual parts, thereby justifying the title for this paper.

Keywords

Color Imaging Enlarge View Halftone Image Color Scanner Color Reproduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    CIE: Colorimetry. CIE Publication No. 15.2, Central Bureau of the CIE, Vienna (1986), the commonly used data on color matching functions is available at the CIE web site at http://www.cie.co.at/
  2. 2.
    Cohen, J.B., Gibson, W.A.: Vector model for color sensations. J. Opt. Soc. Am. 52(6), 692–697 (1962)CrossRefGoogle Scholar
  3. 3.
    Dubois, E.: The structure and properties of color spaces and color image spaces. Synthesis Lectures on Image, Video, and Multimedia Processing 4(1), 1–129 (2009)CrossRefGoogle Scholar
  4. 4.
    Franklin, G.F., Powell, J.D., Emami-Naeini, A.: Feedback Control of Dynamic Systems, 6th edn. Prentice Hall, Englewood Cliffs (2009)MATHGoogle Scholar
  5. 5.
    Golub, G.H., Loan, C.F.V.: Matrix Computations, 2nd edn. The Johns Hopkins University Press, Baltimore (1989)MATHGoogle Scholar
  6. 6.
    Grassmann, H.G.: Zur theorie der farbenmischung. Poggendorf. Annalen der Physik und Chemie 89, 69–84 (1853); translation titled Theory of compound colors. Philosophic Magazine 4(7), 254–264 (1854), reprinted in [11,12]CrossRefGoogle Scholar
  7. 7.
    Grum, F., Bartleson, C.J. (eds.): Optical Radiation Measurements: Color Measurement, vol. 2. Academic Press, New York (1980)Google Scholar
  8. 8.
    Haykin, S.: Signal processing: where physics and mathematics meet. IEEE Sig. Proc. Mag. 18(4), 6–7 (2001)CrossRefGoogle Scholar
  9. 9.
    von Helmholtz, H.L.F.: Physiological Optics (1866), extracts reprinted in [11] Google Scholar
  10. 10.
    Knox, K.T., Wang, S.: Digital watermarks using stochastic screens. In: Beretta, G.B., Eschbach, R. (eds.) Proc. SPIE: Color Imaging: Device Independent Color, Color Hardcopy, and Graphic Arts II, vol. 3018, pp. 316–322 (February 1997)Google Scholar
  11. 11.
    MacAdam, D.L. (ed.): Sources of Color Science. MIT Press, Cambridge (1970)Google Scholar
  12. 12.
    MacAdam, D.L. (ed.): Selected Papers on Colorimetry-Fundamentals. SPIE Optical Engineering Press, Bellingham (1993)Google Scholar
  13. 13.
    Magnus, J.R., Neudecker, H.: Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley, Chichester (1988)MATHGoogle Scholar
  14. 14.
    Maxwell, J.C.: The diagram of colors. Transactions of the Royal Society of Edinburgh 21, 275–298 (1857), reprinted in [11,12]CrossRefGoogle Scholar
  15. 15.
    Maxwell, J.C.: Theory of compound colors and the relations to the colors of the spectrum. Proc. of the Royal Society of London 10, 404–409 (1860), reprinted in [11,12] CrossRefGoogle Scholar
  16. 16.
    Oztan, B., Sharma, G.: Continuous phase-modulated halftones. IEEE Trans. Image Proc. 18(12), 2718–2734 (2009), http://www.ece.rochester.edu/~gsharma/papers/OztanSharmaContinPhaseModTIPDec2009.pdf MathSciNetCrossRefGoogle Scholar
  17. 17.
    Oztan, B., Sharma, G.: Per-separation clustered-dot color halftone watermarks: Separation estimation based on spatial frequency content. J. Electronic Imaging 19(4), 043007–1–22 (2010), http://www.ece.rochester.edu/~gsharma/papers/OztanPerSepColrHTWMFreqSepJEI043007.pdf Google Scholar
  18. 18.
    Sharma, G.: Set theoretic estimation for problems in subtractive color. Color Res. Appl. 25(4), 333–348 (2000), http://www.ece.rochester.edu/~gsharma/papers/subcolpocsCRNA2000.pdf CrossRefGoogle Scholar
  19. 19.
    Sharma, G.: Target-less scanner color calibration. J. Imaging Sci. and Tech. 44(4), 301–307 (2000), http://www.ece.rochester.edu/~gsharma/papers/ntargcaljist00.pdf Google Scholar
  20. 20.
    Sharma, G.: Show-through cancellation in scans of duplex printed documents. IEEE Trans. Image Proc. 10(5), 736–754 (2001), http://www.ece.rochester.edu/~gsharma/papers/showthuip01.pdf CrossRefGoogle Scholar
  21. 21.
    Sharma, G.: Color fundamentals for digital imaging. In: Digital Color Imaging Handbook [22], chapter 1Google Scholar
  22. 22.
    Sharma, G. (ed.): Digital Color Imaging Handbook. CRC Press, Boca Raton (2003)Google Scholar
  23. 23.
    Sharma, G.: Imaging Arithmetic: Physics u Math > Physics + Math. In: Eschbach, R., Marcu, G.G. (eds.) Proc. SPIE: Color Imaging X: Processing, Hardcopy, and Applications, vol. 5667, pp. 95–106 (January 2005), http://www.ece.rochester.edu/~gsharma/papers/imagphysmathei05.pdf, invited Paper
  24. 24.
    Sharma, G., Trussell, H.J.: Digital color imaging. IEEE Trans. Image Proc. 6(7), 901–932 (1997), http://www.ece.rochester.edu/~gsharma/papers/dciip97.pdf CrossRefGoogle Scholar
  25. 25.
    Sharma, G., Trussell, H.J.: Figures of merit for color scanners. IEEE Trans. Image Proc. 6(7), 990–1001 (1997), http://www.ece.rochester.edu/~gsharma/papers/fomip97.pdf CrossRefGoogle Scholar
  26. 26.
    Sharma, G., Wang, S.: Show-through watermarking of duplex printed documents. In: Delp, E.J., Wong, P.W. (eds.) Proc. SPIE: Security, Steganography, and Watermarking of Multimedia Contents VI, vol. 5306, pp. 670–684 (January 2004), http://www.ece.rochester.edu/~gsharma/papers/showthruWMei2004.pdf
  27. 27.
    Sharma, G.: Color scanner characterization, performance evaluation, and design. Ph. D. dissertation, North Carolina State University, Raleigh, NC (August 1996)Google Scholar
  28. 28.
    Wyszecki, G., Stiles, W.S.: Color Science: Concepts and Methods, Quantitative Data and Formulae. John Wiley & Sons, Inc., New York (1982)Google Scholar
  29. 29.
    Young, T.: On the theory of light and colors. Philosophical Transactions of the Royal Society of London 92, 20–71 (1802), extracts reprinted in [11,12]Google Scholar
  30. 30.
    Yule, J.A.C.: Principles of color reproduction, applied to photomechanical reproduction, color photography, and the ink, paper, and other related Industries. Wiley, New York (1967)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gaurav Sharma
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of RochesterRochesterUSA

Personalised recommendations