Perception Based Representations for Computational Colour

  • Maria Vanrell
  • Naila Murray
  • Robert Benavente
  • Alejandro Párraga
  • Xavier Otazu
  • Ramon Baldrich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6626)


The perceived colour of a stimulus is dependent on multiple factors stemming out either from the context of the stimulus or idiosyncrasies of the observer. The complexity involved in combining these multiple effects is the main reason for the gap between classical calibrated colour spaces from colour science and colour representations used in computer vision, where colour is just one more visual cue immersed in a digital image where surfaces, shadows and illuminants interact seemingly out of control.

With the aim to advance a few steps towards bridging this gap we present some results on computational representations of colour for computer vision. They have been developed by introducing perceptual considerations derived from the interaction of the colour of a point with its context. We show some techniques to represent the colour of a point influenced by assimilation and contrast effects due to the image surround and we show some results on how colour saliency can be derived in real images. We outline a model for automatic assignment of colour names to image points directly trained on psychophysical data. We show how colour segments can be perceptually grouped in the image by imposing shading coherence in the colour space.


colour perception psychophysical data induction saliency naming segmentation 


  1. 1.
    Otazu, X., Vanrell, M., Párraga, C.A.: Multiresolution wavelet framework models brightness induction effects. Vision Research 48, 733–751 (2008)CrossRefGoogle Scholar
  2. 2.
    Otazu, X., Párraga, C.A., Vanrell, M.: Toward a unified chromatic induction model. Journal of Vision 10(12) (2010)Google Scholar
  3. 3.
    Murray, N., Vanrell, M., Otazu, X., Párraga, C.A.: Non-Parametric Saliency Estimation based on low-level vision mechanism. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2011) (in press)Google Scholar
  4. 4.
    Benavente, R., Vanrell, M., Baldrich, R.: Parametric fuzzy set for automatic color naming. Journal of the Optical Society of America 25(10), 2582–2593 (2008)CrossRefGoogle Scholar
  5. 5.
    Vázquez, E., Baldrich, R., van de Weijer, J., Vanrell, M.: Describing Reflectances for Color Segmentation Robust to Shadows, Highlights and Texture. IEEE Trans. on PAMI (2010)Google Scholar
  6. 6.
    Hordley, S.: Scene illuminant estimation: Past, present, and future. Color Research & Application 31, 303–314 (2006)CrossRefGoogle Scholar
  7. 7.
    Finlayson, G.D., Hordley, S.D., Hubel, P.: Color by correlation: A simple, unifying framework for color constancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1209–1221 (2001)CrossRefGoogle Scholar
  8. 8.
    Gevers, T., Smeulders, A.: Color based object recognition. Pattern Recognition 32, 453–464 (1997)CrossRefGoogle Scholar
  9. 9.
    Khan, F.S., wan de Weijer, J., Vanrell, M.: Top-down color attention for object recognition. In: International Conference on Computer Vision, pp. 979–986 (2009)Google Scholar
  10. 10.
    van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1582–1596 (2010)CrossRefGoogle Scholar
  11. 11.
    Grosse, R., Johnson, M.K., Adelson, E.H., Freeman, W.T.: Ground-truth dataset and baseline evaluations for intrinsic image algorithms. In: International Conference on Computer Vision, pp. 2335–2342 (2009)Google Scholar
  12. 12.
    Zickler, T., Mallick, S.P., Kriegman, D.J., Belhumeur, P.N.: Color Subspaces as Photometric Invariants. International Journal of Computer Vision 79(1), 13–30 (2008)CrossRefGoogle Scholar
  13. 13.
    Benavente, R., Párraga, C.A., Vanrell, M.: European Conference on Visual Perception. Perception Suppl. Series, vol. 38, p. 36 (2009)Google Scholar
  14. 14.
    Heeger, D.H.: Normalization of cell responses in cat striate cortex. Visual Neuroscience 9(2), 181–197 (1992)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Blakeslee, B., McCourt, M.E.: Similar mechanisms underlie simultaneous brightness contrast and grating induction. Vision Research 37(20), 2849–2869 (1997)CrossRefGoogle Scholar
  16. 16.
    Bruce, N.D., Tsotsos, J.K.: Saliency based on information maximization. In: Advances in Neural Information Processing Systems, vol. 18, pp. 155–162. MIT Press, Cambridge (2006)Google Scholar
  17. 17.
    Seo, H.J., Milanfar, P.: Nonparametric bottom-up saliency detection by self-resemblance. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009, pp. 45–52 (2009)Google Scholar
  18. 18.
    Itti, L., Koch, C., Niebur, E.: A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  19. 19.
    Berlin, B., Kay, B.: Basic Color Terms: Their Universality and Evolution. University of California Press, Berkeley (1969)Google Scholar
  20. 20.
    Boynton, R., Olson, C.: Salience of chromatic basic color terms confirmed by three measures. Vision Research 30, 1311–1317 (1990)CrossRefGoogle Scholar
  21. 21.
    Sturges, J., Whitfield, T.: Salient features of munsell color space as a function of monolexemic naming and response latencies. Vision Research 37, 307–313 (1997)CrossRefGoogle Scholar
  22. 22.
    Tominaga, S.: A color-naming method for computer color vision. In: Proceedings of IEEE International Conference on Cybernetics and Society, pp. 573–577. IEEE, Los Alamitos (1985)Google Scholar
  23. 23.
    Wang, Z., Luo, M., Kang, B., Choh, H., Kim, C.: An algorithm for categorising colours into universal colour names. In: Proceedings of the 3rd European Conference on Colour in Graphics, Imaging, and Vision, Society for Imaging Science and Technology, IS&T, pp. 426–430 (2006)Google Scholar
  24. 24.
    Kay, P., McDaniel, C.: The linguistic significance of the meaning of basic color terms. Language 3, 610–646 (1978)CrossRefGoogle Scholar
  25. 25.
    Benavente, R., Vanrell, M., Baldrich, R.: A data set for fuzzy colour naming. Color Research and Applications 31, 48–56 (2006)CrossRefGoogle Scholar
  26. 26.
    Shafer, S.: Using color to seperate reflection components. Color Research and Application 10(4), 210–218 (1985)CrossRefGoogle Scholar
  27. 27.
    López, A.M., Lumbreras, F., Serrat, J., Villanueva, J.J.: Evaluation of methods for ridge and valley detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(4), 327–335 (1999)CrossRefGoogle Scholar
  28. 28.
    Micusık, B., Hanbury, A.: Automatic image segmentation by positioning a seed. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 468–480. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    Pantofaru, C., Hebert, M.: A comparison of image segmentation algorithms. Technical Report CMU-RI-TR-05-40, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (September 2005)Google Scholar
  30. 30.
    Fowlkes, C., Martin, D., Malik, J.: Learning affinity functions for image segmentation combining patch-based and gradient-based approaches. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2003)Google Scholar
  31. 31.
    Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Maria Vanrell
    • 1
  • Naila Murray
    • 1
  • Robert Benavente
    • 1
  • Alejandro Párraga
    • 1
  • Xavier Otazu
    • 1
  • Ramon Baldrich
    • 1
  1. 1.Computer Vision CenterUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations