Video-Based Illumination Estimation

  • Ning Wang
  • Brian Funt
  • Congyan Lang
  • De Xu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6626)


One possible solution to estimating the illumination for color constancy and white balance in video sequences would be to apply one of the many existing illumination-estimation algorithms independently to each video frame. However, the frames in a video are generally highly correlated, so we propose a video-based illumination-estimation algorithm that takes advantage of the related information between adjacent frames. The main idea of the method is to cut the video clip into different ‘scenes.’ Assuming all the frames in one scene are under the same (or similar) illuminant, we combine the information from them to calculate the chromaticity of the scene illumination. The experimental results showed that the proposed method is effective and outperforms the original single-frame methods on which it is based.


color constancy illumination estimation scene cutting 


  1. 1.
    Forsyth, D.A.: A Novel Algorithm for Color Constancy. International Journal of Computer Vision 5(1), 5–36 (1990)CrossRefGoogle Scholar
  2. 2.
    Funt, B., Shi, L.: The Rehabilitation of MaxRGB. In: Proc. IS&T Eighteenth Color Imaging Conference, San Antonio (2010)Google Scholar
  3. 3.
    Finlayson, G.D., Trezzi, E.: Shades of gray and colour constancy. In: Color Imaging Conference, IS&T - The Society for Imaging Science and Technology, pp. 37–41 (2004)Google Scholar
  4. 4.
    Cardei, V.C., Funt, B., Barnard, K.: Estimating the scene illumination chromaticity by using a neural network. J. Opt. Soc. Am. A. 19(12), 2374–2386 (2002)CrossRefGoogle Scholar
  5. 5.
    Finlayson, G.D., Hordley, S.D., Hubel, P.M.: Color by correlation: A simple, unifying framework for color constancy. IEEE Trans. Pattern Analysis and Machine Intelligence 23(11), 1209–1221 (2001)CrossRefGoogle Scholar
  6. 6.
    Brainard, D.H., Longère, P., Delahunt, P.B., Freeman, W.T., Kraft, J.M., Xiao, B.: Bayesian model of human color constancy. Journal of Vision 6, 1267–1281 (2006)CrossRefGoogle Scholar
  7. 7.
    van de Weijer, J., Gevers, T., Gijsenij, A.: Edge-based color constancy. IEEE Trans. Image Proc. 16(9), 2207–2214 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Barnard, K., Martin, L., Coath, A., Funt, B.: A comparison of computational color constancy algorithms - part ii: Experiments with image data. IEEE Trans. Image Proc. 11(9), 985–996 (2002)CrossRefGoogle Scholar
  9. 9.
    Ciurea. F., Funt, B.: A Large Image Database for Color Constancy Research. In: Proc. Eleventh Color Imaging Conference, pp. 160–164. The Society for Imaging Science and Technology (2003)Google Scholar
  10. 10.
    Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vision, 11–32 (1991)Google Scholar
  11. 11.
    Djouadi, A., Snorrason, O., Garber, F.D.: The Quality of Training Sample Estimates of the Bhattacharyya Coefficient. IEEE Trans. Pattern Anal. Mach. Intell., 92–97 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ning Wang
    • 1
    • 2
  • Brian Funt
    • 2
  • Congyan Lang
    • 1
  • De Xu
    • 1
  1. 1.School of Computer Science and Infromation TechnologyBeijing Jiaotong UniversityBeijingChina
  2. 2.School of Computing ScienceSimon Fraser UniversityBurnabyCanada

Personalised recommendations