Color Correction: A Novel Weighted Von Kries Model Based on Memory Colors

  • Alejandro Moreno
  • Basura Fernando
  • Bismillah Kani
  • Sajib Saha
  • Sezer Karaoglu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6626)


In this paper we present an automatic color correction framework based on memory colors. Memory colors for 3 different objects: grass, snow and sky are obtained using psychophysical experiments under different illumination levels and later modeled statistically. While supervised image segmentation method detects memory color objects, a luminance level predictor classifies images as dark, dim or bright. This information along with the best memory color model that fits to the data is used to do the color correction using a novel weighted Von Kries formula. Finally, a visual experiment is conducted to evaluate color corrected images. Experimental results suggest that the proposed weighted von Kries model is an appropriate color correction model for natural images.


Color Correction Memory Color Von Kries Model Multispectral Images 


  1. 1.
    Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001), 10.1023/A:1010933404324CrossRefzbMATHGoogle Scholar
  2. 2.
    Fairchild, M.D.: Color Appearance Models, 2nd edn. Wiley-IS&T, UK (2005)Google Scholar
  3. 3.
    Fredembach, C., Estrada, F., Süsstrunk, S.: Memory colour segmentation and classification using class-specific eigenregions. Journal of the Society for Information Display 17, 921–931 (2009)CrossRefGoogle Scholar
  4. 4.
    Gage, J.: Color and Culture: Practice and Meaning from Antiquity to Abstraction. Thames & Hudson, UK (1993)Google Scholar
  5. 5.
    Hanbury, A.: A 3D-polar coordinate colour representation well adapted to image analysis. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 804–811. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Ishihara, S.: Tests for colour blindness (1917)Google Scholar
  7. 7.
    Jobson, D.J., Rahman, Z., Woodell, G.A.: Statistics of visual representation, vol. 4736, pp. 25–35. SPIE, Bellingham (2002)Google Scholar
  8. 8.
    Kaiqi, H., Zhenyang, W., Qiao, W.: Image enhancement based on the statistics of visual representation. Image and Vision Computing 23(1), 51–57 (2005)CrossRefGoogle Scholar
  9. 9.
    Lopez-Moreno, J., Hadap, S., Reinhard, E., Gutierrez, D.: Compositing images through light source detection. Computers & Graphics 34(6), 698–707 (2010); Graphics for Serious Games; Computer Graphics in Spain: a Selection of Papers from CEIG 2009; Selected Papers from the SIGGRAPH Asia Education ProgramCrossRefGoogle Scholar
  10. 10.
    Lu, A., Xu, G., Jin, H., Mo, L., Zhang, J., Zhang, J.X.: Electrophysiological evidence for effects of color knowledge in object recognition. Neuroscience Letters 469(3), 405–410 (2010)CrossRefGoogle Scholar
  11. 11.
    Rahtu, E., Nikkanen, J., Kannala, J., Lepistö, L., Heikkilä, J.: Applying visual object categorization and memory colors for automatic color constancy. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 873–882. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Roberson, D., Davidoff, J., Davies, I.R.L., Shapiro, L.R.: Color categories: Evidence for the cultural relativity hypothesis. Cognitive Psychology 50, 378–411 (2005)CrossRefGoogle Scholar
  13. 13.
    Stepan, O., Jiri, M., Ondrej, C.: On the interaction between object recognition and colour constancy, vol. 45, pp. 5–32. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  14. 14.
    van de Weijer, J., Schmid, C., Verbeek, J.: Using high-level visual information for color constancy. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1 –8 (2007)Google Scholar
  15. 15.
    Zhang, H., Quan, S.: Memory color assisted illuminant estimation through pixel clustering, vol. 7537, p. 75370J. SPIE, Bellingham (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alejandro Moreno
    • 1
  • Basura Fernando
    • 1
  • Bismillah Kani
    • 1
  • Sajib Saha
    • 1
  • Sezer Karaoglu
    • 1
  1. 1.Color in Informatics and Media Technology (CIMET)France

Personalised recommendations