On the Application of Structured Sparse Model Selection to JPEG Compressed Images

  • Giovanni Maria Farinella
  • Sebastiano Battiato
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6626)

Abstract

The representation model that considers an image as a sparse linear combination of few atoms of a predefined or learned dictionary has received considerable attention in recent years. Among the others, the Structured Sparse Model Selection (SSMS) was recently introduced. This model outperforms different state-of-the-art algorithms in a number of imaging tasks (e.g., denoising, deblurring, inpainting). Despite the high denoising performances achieved by SSMS have been demonstrated, the compression issues has been not considered during the evaluation. In this paper we study the performances of SSMS under lossy JPEG compression. Experiments have shown that the SSMS method is able to restore compressed noisy images with a significant margin, both in terms of PSNR and SSIM quality measure, even though the original framework is not tuned for the specific task of compression. Quantitative and qualitative results pointed out that SSMS is able to perform both denoising and compression artifacts reduction (e.g., deblocking), by demonstrating the promise of sparse coding methods in application where different computational engines are combined to generate a signal (e.g., Imaging Generation Pipeline of single sensor devices).

Keywords

Sparse Coding Inverse Problems Compression Denoising Image Enhancement Image Restoration 

References

  1. 1.
    Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C.: Image Inpainting. In: SIGGRAPH (2000)Google Scholar
  2. 2.
    Li, X., Orchard, M.T.: New edge-directed interpolation. IEEE Transactions on Image Processing 10(10), 1521–1527 (2001)CrossRefGoogle Scholar
  3. 3.
    Battiato, S., Gallo, G., Stanco, F.: A Locally-Adaptive Zooming Algorithm for Digital Images. Image Vision and Computing Journal 11(20), 805–812 (2002)CrossRefGoogle Scholar
  4. 4.
    Buades, A., Coll, B., Morel, J.-M.: A Non-Local Algorithm for Image Denoising. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2005)Google Scholar
  5. 5.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Modeling and Simulation 4(2), 490–530 (2006)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Battiato, S., Bosco, A., Bruna, A.R., Rizzo, R.: Noise Reduction for CFA Image Sensors Exploiting HVS behavior. Sensors Journal - MDPI Open Access - Special Issue on Integrated High-Performance Imagers 3(9), 1692–1713 (2009)Google Scholar
  7. 7.
    Joshi, N., Zitnick, C.L., Szeliski, R., Kriegman, D.J.: Image deblurring and denoising using color priors. In: Computer Vision and Pattern Recognition (2009)Google Scholar
  8. 8.
    Battiato, S., Guarnera, M., Messina, G., Tomaselli, V.: Recent patents on color demosaicing. Recent Patents on Computer Science 1(2), 194–207 (2008)CrossRefGoogle Scholar
  9. 9.
    Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transaction on Signal Processing 54(11), 4311–4322 (2006)CrossRefGoogle Scholar
  10. 10.
    Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing 54(12), 3736–3745 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Transactions on Image Processing 17(1), 53–69 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Discriminative Learned Dictionaries for Local Image Analysis. In: IEEE International Conference on Computer Vision and Pattern Recognition (2008)Google Scholar
  13. 13.
    Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: International Conference on Computer Vision (2009)Google Scholar
  14. 14.
    Lou, Y., Bertozzi, A., Soatto, S.: Direct sparse deblurring. Technical Report, CAM-UCLA (2009)Google Scholar
  15. 15.
    Fadili, M.J., Starck, J.L., Murtagh, F.: Inpainting and zooming using sparse representations. The Computer Journal 52(1) (2009)Google Scholar
  16. 16.
    Yu, G., Sapiro, G., Mallat, S.: Image Modeling and Enhancement via Structured Sparse Model Selection. In: IEEE International Conference on Image Processing (2010)Google Scholar
  17. 17.
    Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research 37, 3311–3325 (1997)CrossRefGoogle Scholar
  18. 18.
    Olshausen, B.A., Field, D.J.: Sparse Coding of Sensory Inputs. Current Opinion in Neurobiology 14, 481–487 (2004)CrossRefGoogle Scholar
  19. 19.
    Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: International Conference on Machine Learning (2009)Google Scholar
  20. 20.
    Wallace, G.K.: The JPEG still picture compression standard. Communications of the ACM 34(4) (1991)Google Scholar
  21. 21.
    Zhai, G., Zhang, W., Yang, X., Lin, W.: Efficient Image Deblocking Based on Post filtering in Shifted Windows. IEEE Transactions on Circuits and Systems for Video Technology 18(1), 122–126 (2008)CrossRefGoogle Scholar
  22. 22.
    Zhai, G., Zhang, W., Yang, X., Lin, W., Xu, Y.: Efficient Deblocking With Coefficient Regularization, Shape-Adaptive Filtering, and Quantization Constraint. IEEE Transactions on Multimedia 10(5), 735–745 (2008)CrossRefGoogle Scholar
  23. 23.
    Kim, J.: Adaptive Blocking Artifact Reduction using Wavelet-Based Block Analysis. IEEE Transactions on Consumer Electronics (55), 2 (2009)Google Scholar
  24. 24.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar
  25. 25.
    Foi, A., Trimeche, M., Katkovnik, V., Egiazarian, K.O.: Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw- Data. IEEE Transactions on Image Processing 17(10), 1737–1754 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kim, Y.-H., Lee, J.: Image feature and noise detection based on statistical hypothesis tests and their applications in noise reduction. IEEE Transactions on Consumer Electronics 51(4), 1367–1378 (2005)CrossRefGoogle Scholar
  27. 27.
    Bosco, A., Bruna, A., Giacalone, D., Battiato, S., Rizzo R.: Signal-Dependent Raw Image Denoising Using Image Sensor Characterization Via Multiple Acquisitions. In: SPIE Electronic Imaging 2010 - Digital Photography VI (2010)Google Scholar
  28. 28.
    Yim, C., Bovik, A.: Quality Assessment of De-blocked Images. IEEE Transaction on Image Processing 20(1), 88–98 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Giovanni Maria Farinella
    • 1
  • Sebastiano Battiato
    • 1
  1. 1.Image Processing Laboratory, Dipartimento di Matematica e InformaticaUniversità degli Studi di CataniaCataniaItalia

Personalised recommendations