Skip to main content

Functional Designs of the Gas Exchangers

  • Chapter
  • First Online:
Bioengineering Aspects in the Design of Gas Exchangers
  • 693 Accesses

Abstract

Reconstruction of the changes that have occurred during the evolution of the gas exchangers is riddled with pitfalls. This is mainly because of the almost complete lack of instructive fossilized materials, as would be expected, of soft tissues such as the respiratory organs/structures. The precept that “progeny recapitulates phylogeny” is too simple for the discipline of evolutionary developmental biology (evo–devo) to be directly extrapolated in studies of the paleobiology of respiration (e.g., Northcutt 1990). For example, during their development (metamorphosis), amphibians undergo drastic changes in the form, location, and function of the gas exchangers (Sect. 5.4.1). The transformations cannot be predicted from one level of development to another. Moreover, respiration appears to be too important for perpetuation of “primitive” features from one evolutionary level to another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla MA, Maina JN, King AS, King DZ, Henry J (1982) Morphometrics of the avian lung 1 The domestic fowl, Gallus domesticus. Respir Physiol 47:267–278

    PubMed  CAS  Google Scholar 

  • Abdel-Aziz MT, Mostafa T, Atta H, Wassef MA, Fouad HH et al (2009) Putative role of carbon monoxide signaling pathway in penile erectile function. J Sex Med 6:49–60

    PubMed  CAS  Google Scholar 

  • Abraham JA, Mergia A, Wang JL, Tumolo A, Friedman KA et al (1986) Nucleotide sequence of a bovine cDNA clone encoding the angiogenetic protein, basic fibroblast growth factor. Science 233:545–548

    PubMed  CAS  Google Scholar 

  • Abraham JZ, Kobzik L, Moody MR, Reid MB, Stamler JS (1998) Cyclic GMP is a second messenger by which nitric oxide inhibits diaphragm contraction. Comp Biochem Physiol 119A:177–183

    CAS  Google Scholar 

  • Acarregui MJ, Penisten ST, Goss KL, Ramirez K, Snyder JM (1999) Vascular endothelial growth factor gene expression in human fetal lung in vitro. Am J Respir Cell Mol Biol 20:14–23

    PubMed  CAS  Google Scholar 

  • Ackerman RA, White FN (1979) Cyclic carbon dioxide exchange in the turtle Pseusemys scripta. Physiol Zool 52:378–389

    Google Scholar 

  • Affolter M, Montagne J, Walldorf U, Groppe J, Kloter U et al (1994) The Drosophila SRF homolog is expressed in a subset of tracheal cells and maps within a genomic region required for tracheal development. Development 120:743–753

    PubMed  CAS  Google Scholar 

  • Affolter M, Bellusci S, Itoh B, Thiery JB, Web Z (2003) Tube or not tube: remodeling epithelial tissues via branching morphogenesis. Dev Cell 4:1–20

    Google Scholar 

  • Affolter M, Zeller R, Caussinus E (2009) Tissue remodelling through branching morphogenesis. Nature Rev 10:831–842

    CAS  Google Scholar 

  • Ahberg PE, Milner AR (1994) The origin and early diversification of tetrapods. Nature (London) 368:507–514

    Google Scholar 

  • AinsworthDM KJM, Lobas JG, Farrell PM, Eicker SW (1986) Oxygen toxicity in the infant rhesus monkey lung Light microscopic and ultrastructural studies. Histol Histopath 1:75–87

    Google Scholar 

  • Akeson AL, Greenberg JM, Cameron JE, Thompson FY, Brooks SK et al (2003) Temporal and spatial regulation of VEGF-A controls vascular patterning in the embryonic lung. Dev Biol 264:443–455

    PubMed  CAS  Google Scholar 

  • Akester AR (1970) Osmiophilic inclusion bodies as the sources of laminated membrane in the epithelial lining of avian tertiary bronchi. J Anat 107:189–190

    PubMed  CAS  Google Scholar 

  • Akiyama J, Hoffman A, Brown C, Allen L, Edmondson J et al (2002) Tissue distribution of surfactant proteins A and D in the mouse. J Histochem Cytochem 50:993–996

    PubMed  CAS  Google Scholar 

  • Alcorn D, Adamson TM, Maloney JE, Robinson PM (1980) Morphological effects of chronic bilateral phrenectomy or vagotomy in the fetal lamb. J Anat 130:683–665

    PubMed  CAS  Google Scholar 

  • Alcorn D, Alexander IGS, Adamson TM, Maloney JE, Ritchie BC, Robinson PM (1977) Morphological effects of chronic tracheal ligation and drainage in the fetal lamb lungs. J Anat 123:649–660

    PubMed  CAS  Google Scholar 

  • Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxidase synthases: structure, function and inhibition. Biochem J 357:593–615

    PubMed  CAS  Google Scholar 

  • Alexander RMcN (1967) Functional design in fishes. Hutchison, London

    Google Scholar 

  • Alexander RMcN (1993) Buoyancy. In: Evans DH (ed) The physiology of fishes. CRC Press, Boca Raton, FL, pp 75–97

    Google Scholar 

  • Alexandrou MA, Oliveira C, Maillard M, McGill RAR, Newton J et al (2011) Competition and phylogeny determine community structure in Müllerian co-mimics. Nature (London) 469:84–88

    CAS  Google Scholar 

  • Alfonso RL, Alain P (eds) (2005) Reactive oxygen species in plant signaling. Springer, Berlin

    Google Scholar 

  • Allaby A, Allaby M (1999) Pasteur effect. A dictionary of earth sciences, 1999 Encyclopedia.com: http://www.encyclopedia.com/doc/1013-Pasteureffect.html

  • Al-Motabagani MA (2005) Histological changes in the alveolar structure of the rat lung after exposure to hyperoxia. Ital J Anat Embryol 110:209–223

    PubMed  Google Scholar 

  • Alonso C, Waring A, Zasadzinski JA (2005) Keeping lung surfactant where it belongs: protein regulation of two-dimensional viscosity. Biophys J 89:266–273

    PubMed  CAS  Google Scholar 

  • Alsberg E, Moore K, Huang S, Polte T, Inger DE (2004) The mechanical and cytoskeletal basis of lung morphogenesis. In: Massaro DJ, Massaro GC, Chambon P (eds) Lung development and regeneration. Marcel, New York, pp 247–274

    Google Scholar 

  • Al-Wassia AH, Innes AJ, Whiteley NH, Taylor EW (1989) Aerial and aquatic respiration in the ghost crab Ocypode saratan. I Fine structure of respiratory surfaces, their ventilation and perfusion; oxygen consumption and carbon dioxide production. Comp Biochem Physiol 94A:755–764

    Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Nat Acad Sci USA 90:7915–7922

    PubMed  CAS  Google Scholar 

  • Anbar A, Duan Y, Lyons T, Arnold G, Kendall B, Creaser R, Kaufman A, Gordon G et al (2007) A whiff of oxygen before the great oxidation event? Science 317:1903–1906

    PubMed  CAS  Google Scholar 

  • Andersen HT (1961) Physiological adjustments to prolonged diving in the American alligator, Allogator mississippiensis. Acta Physiol Scand 53:23–45

    PubMed  CAS  Google Scholar 

  • Andersen HT (1966) Physiological adaptations in diving vertebrates. Physiol Rev 46:212–243

    PubMed  CAS  Google Scholar 

  • Anderson JF (1970) Metabolic rates of spiders. Comp Biochem Physiol 33:51–72

    PubMed  CAS  Google Scholar 

  • Anderson M (1978) Optimal foraging area: size and allocation of search effort. Theor Popul Biol 13:397–409

    Google Scholar 

  • Anderson AE, Felbeck H, Childress JJ (1990) Aerobic metabolism is maintained in animal tissue during rapid sulfide oxidation in the symbiont-containing clam Solemya reidi. J Exp Zool 256:130–134

    CAS  Google Scholar 

  • Andreeva AV, Kutuzov MA, Vovno-Yasenetskaya TA (2007) Regulation of surfactant secretion in alveolar type II cells. Am J Physiol 293:L259–L271

    CAS  Google Scholar 

  • Andrews EA (1955) Some minute movements in protoplasm. Biol Bull 108:121–124

    Google Scholar 

  • Andrews JA (2000) A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell 11:1859–1874

    Google Scholar 

  • Andrews EB, Taylor PM (1988) Fine structure, mechanism of heart function and hemodynamics in the prosobranch gastropod mollusc Littorina littorea (L). J Comp Physiol B 158:247–262

    Google Scholar 

  • Andriashev AP (1962) A general view of the Antarctic fish fauna. In: Oye V, Mieghem J (eds) Biogeography and ecology in Antarctica. Dr W Junk Publishers, The Hague, pp 491–550

    Google Scholar 

  • Angersbach D, Decker H (1978) Oxygen transport in crayfish blood: effect of thermal acclimation and short-term fluctuations related to ventilation and cardiac performance. J Comp Physiol 123B:105–112

    Google Scholar 

  • Anthony EH (1961) Survival of the goldfish in presence of carbon monoxide. J Exp Biol 38:109–125

    CAS  Google Scholar 

  • Antoine M, WirzW TCG, Mavituna M, Emans N et al (2005) Expression pattern of fibroblast growth factors (FGFs), their receptors and antagonists in primary endothelial cells and vascular smooth muscle cells. Growth Factors 23:87–95

    PubMed  CAS  Google Scholar 

  • Aoki T, YamasawaF KT, Shibata T, Ishizaka A, Urano T, Okada Y (2008) Effects of long-term low-dose oxygen supplementation on the epithelial function, collagen metabolism and interstitial fibrogenesis in the guinea pig lung. Respir Res 9:37. doi:10.1186/1465-9921-9-37

    PubMed  Google Scholar 

  • Applegate LA, Luscher P, Tyrrell RM (1991) Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res 51:974–978

    PubMed  CAS  Google Scholar 

  • Aprelikova O, Chandramouli GVR, Wood M, Vasselli JR, Riss J et al (2004) Resulation of HIF prolyl hydroxylases by hypoxia-inducible factors. J Cell Biochem 92:491–501

    PubMed  CAS  Google Scholar 

  • Arany Z, Huang LE, Eckner R (1996) An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci USA 93:12969–12973

    PubMed  CAS  Google Scholar 

  • Archer SL, Weir EK, Reeve HL, Michelakis E (2000) Molecular identification of O2 and O2-sensitive potassium channels in the pulmonary circulation. Adv Exp Med Biol 475:219–240

    PubMed  CAS  Google Scholar 

  • Arias-Diaz J, Villa N, Hernandez J, Vara E, Balibrea JL (1997) Carbon monoxide contributes to the cytokine-induced inhibition of surfactant synthesis by human type II pneumocytes. Arch Surg 132:1352–1360

    PubMed  CAS  Google Scholar 

  • Arman E, Haffner-Krausz R, Gorivodsky M, Lonai P (1999) FGF-2 is required for limb outgrowth and lung branching morphogenesis. Proc Nat Acad Sci USA 96:11895–11899

    PubMed  CAS  Google Scholar 

  • Armstrong W (1970) Rhizosphere oxidation in rice and other species: a mathematical model based on the oxygen flux component. Physiol Plant 23:623–630

    CAS  Google Scholar 

  • Arquier N, Vigne P, Duplan E, Hsu T, Therond PP et al (2006) Analysis of the hypoxia-sensing pathway in Drosophila melanogaster. Biochem J 393:471–480

    PubMed  CAS  Google Scholar 

  • Atwell D, Buchan AM, Charpak S, Lauritzzen M, MacVicar BA, Newman EA (2010) Glial and neuronal of brain blood flow. Nature (London) 468:232–243

    Google Scholar 

  • Aubin J, Lemeieux M, Tremblay M, Berard J, Jeannotte L (1997) Early postnatal lethality in Hoxa-5 mutant mice is attributable to respiratory tract defects. Dev Biol 192:432–445

    PubMed  CAS  Google Scholar 

  • Auten RL, Davis JM (2009) Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr Res 66:121–127

    PubMed  CAS  Google Scholar 

  • Axelsson M (2001) The crocodilian heart; more controlled than we thought? Exp Physiol 86(6):785–789

    PubMed  CAS  Google Scholar 

  • Axelsson M, Holm S, Nilsson S (1989) Flow dynamics of the crocodilian heart. Am J Physiol 256:R875–R879

    PubMed  CAS  Google Scholar 

  • Azzar C, Rodh N (1997) Targets for stabilization of atmospheric CO2. Science 276:1818–1819

    Google Scholar 

  • Bachofen H (2009) Why are the lungs dry? Pneumologie 63:346–351

    PubMed  CAS  Google Scholar 

  • Bachofen H, Schürch S (2001) Alveolar surface forces and lung architecture. Comp Biochem Physiol A Mol Integr Physiol 129:183–193

    PubMed  CAS  Google Scholar 

  • Bachofen H, Bachofen M, Weibel ER (1988) Ultrastructural aspects of pulmonary edema. J Thorac Imaging 3:1–7

    PubMed  CAS  Google Scholar 

  • Bacigalupe LD, Bozinovic F (2002) Design, limitations and systained metabolic rate: lessons from small animals. J Exp Biol 205:1–7

    Google Scholar 

  • Bacon NC, Wappner P, O’Rourke JF, Bartlett SM, Shilo B et al (1998) Regulation of the Drosophila bHLH-PAS protein Sima by hypoxia: functional evidence for homology with mammalian HIF-1α. Biochem Biophys Res Commun 249:811–816

    PubMed  CAS  Google Scholar 

  • Bailey L (1954) The respiratory currents in the tracheal system of the adult bee. J Exp Biol 31:589–595

    CAS  Google Scholar 

  • Bakhle YS (1975) Pharmacokinetic function of the lung. In: Junod AF, Haller R (eds) Lung metabolism. Academic, London, pp 293–299

    Google Scholar 

  • Bakhle YS, Vane JR (1977) Metabolic functions of the lung. Marcel, New York

    Google Scholar 

  • Baldwin SR, Simon RM, Grum CM, Ketai LH, Boxer LA, Devall LJ (1986) Oxidant activity in expired breath of patients with adult respiratory distress syndrome. Lancet 1:11–14

    PubMed  CAS  Google Scholar 

  • Balin AK, Allen RG (2004) Oxidative stress and aging. In: Martini L (ed) Enzyclopedia of endocrine diseases, vol 3. Elsevier, New York, p 470

    Google Scholar 

  • Ballantijin CM (1982) Neural control of respiration in fishes and mammals. In: Adink ADF, Spronk N (eds) Third congress of ESCPB, vol I. Pergamon, Oxford, pp 127–140

    Google Scholar 

  • Ballard JWO, Olsen GJ, Faith DP, Odgers WA, Rowell DM, Atkinson PW (1992) Evidence from 12S ribosomal RNA sequences that onychophorans are modified arthropods. Science 258:1345–1347

    PubMed  CAS  Google Scholar 

  • Baranano DE, Snyder SH (2001) Neural roles for heme oxygenase: contrasts to nitric oxide synthetase. Proc Natl Acad Sci USA 98:10996–11002

    PubMed  CAS  Google Scholar 

  • Barazzone C, Horowitz S, Donati YR, Rodriguez J, Piquet PF (1998) Oxygen toxicity in mouse lungs: pathways to cell death. Am J Respir Cell Mol Biol 19:573–581

    PubMed  CAS  Google Scholar 

  • Barja G (1998) Mitochondrial free radical production and aging in mammals and birds. Ann NY Acad Sci 854:224–238

    PubMed  CAS  Google Scholar 

  • Barja G, Cadenas S, Rojas C, Pérez-Campo R, López-Torres M (1994) Low mitochondrial free radical production per unit O2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic rate in birds. Free Radic Res 21:317–327

    PubMed  CAS  Google Scholar 

  • Barle H, Söderberg P, Haegerstrand C, Markström A (2005) Bi-level positive airway pressure ventilation reduces the oxygen cost of breathing in long-standing post-polio patients on invasive home mechanical ventilation. Acta Anaesthesiol Scand 49:197–202

    PubMed  CAS  Google Scholar 

  • Barnes P (1990) Reactive oxygen species and airway inflammation. Free Radic Biol Med 9:235–243

    PubMed  CAS  Google Scholar 

  • Barnes PJ, Liew FY (1995) Nitric oxide and asthmatic inflammation. Immunol Today 16:128–130

    PubMed  CAS  Google Scholar 

  • Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature (London) 329:408–414

    CAS  Google Scholar 

  • Barron ESG, Miller ZB, Bartlett GR (1947) Studies on biological oxidations. XXI. The metabolism of lung as determined by study of slices and ground tissue. J Biol Chem 171:791–800

    PubMed  CAS  Google Scholar 

  • Bartels H (1989) Freeze-fracture stucy of the pavement cell in the lamprey gill epithelium Analogy of membrane structure with the granular cell in the amphibian urinary bladder. Biol Cell 66:165–171

    PubMed  CAS  Google Scholar 

  • Bartels H (1998) The gills of hagfishes. In: Jorgensen JM, Lomholt JP, Weber RE, Malte H (eds) The biology of hagfishes. Chapman and Hall, London, pp 205–222

    Google Scholar 

  • Bartels H, Welsch U (1984) Freeze-fracture study of the turtle lung. 2 Rod shaped particles in the plasma membrane of a mitochondria-rich pneumocyte Pseudemys (Chrysemys) scripta. Cell Tissue Res 236:453–467

    PubMed  CAS  Google Scholar 

  • Barthelemy L (1987) Oxygen poisoning. In: Dejours P (ed) Comparative physiology of environmental physiology, vol 2. Karger, Basel, pp 152–162

    Google Scholar 

  • Bartholomew GA, Barnhart CM (1984) Tracheal gases, respiratory gas exchange, body temperature and flight in some tropical cicadas. J Exp Biol 111:131–144

    Google Scholar 

  • Bartholomew GA, Lighton JRB (1986) Oxygen consumption during hover-feeding in free-ranging Anna hummingbirds. J Exp Biol 123:191–199

    PubMed  CAS  Google Scholar 

  • Bartlett RG, Brubach HF, Specht H (1958) Oxygen cost of breathing. J Appl Physiol 12:413–424

    PubMed  Google Scholar 

  • Bartlett D, Mortola JP, Doll EJ (1986) Respiratory mechanics and control of the ventilatory cycle in the garter snake. Respir Physiol 64:13–37

    PubMed  Google Scholar 

  • Bartram U, Speer CP (2004) The role of transforming growth factor beta in lung development and disease. Chest 125:754–765

    PubMed  Google Scholar 

  • Bartscherer K, Boutros M (2008) Regulation of Wnt protein secretion and its role in gradient formation. EMBO Rep 9:977–982

    PubMed  CAS  Google Scholar 

  • Bass M, Klein W, Fernandes MN, Perry SF, Glass ML (2005) Pulmonary oxygen diffusing capacity of the South American lungfish, Lepidosiren paradoxa: physiological values by the Bohr method. Physiol Biochem Zool 78:560–569

    Google Scholar 

  • Bassingthwaighte JB (1988) Physiological heterogeneity: fractals link determinism and randomness in structures and functions. News Physiol Sci 3:5–9

    PubMed  Google Scholar 

  • Bast A, Haenen G, Doelman C (1991) Oxidants and antioxidants: state of the art. Am J Med 91:25–138

    Google Scholar 

  • Bastacky J, Goerke J, Lee CY, Yager D, Kenaga L et al (1993) Alveolar lining liquid layer is thin and continuous: low-temperature scanning electron microscopy of normal rat lung. Am Rev Respir Dis 147:148

    Google Scholar 

  • Bastacky J, Lee CY, Goerke J, Koushafar H, Yager D et al (1995) Alveolar lining layer is thin and continuous: low temperature scanning electron microscopy of rat lung. J Appl Physiol 79:1615–1628

    PubMed  CAS  Google Scholar 

  • Bastien J, Rochette-Egly C (2004) Nuclear retinoid receptors and transcription of retinoid-target genes. Gene 32:1–16

    Google Scholar 

  • Baudrimont A (1953) Organization générale du poumon et structure des alvéoles pulmonaires des vertebrés (amphibians, reptilians, mammiféres) considérés dans leurs rapports avec la mécanique respiratoire, la circulation pulmonaire fonctionalle et l’activité métabolique de ces animaux. Arch Anat Histol Embryol 38:99–136

    Google Scholar 

  • Bauer ES (1935) Theoretical biology. VIEM Publishing House, Moscow-Lenningrad

    Google Scholar 

  • Baxter PJ, Kapila M (1989) Acute health impact of the gas release at Lake Nyos, Cameroon, 1986. J Vocan Geo Res 23:452–467

    Google Scholar 

  • Baxter PJ, Kapila M, Mfonfu D (1989) Lake Nyos disaster Cameroon, 1986. The medical effects of large scale emission of carbon dioxide. Br Med J 298:1437–1441

    CAS  Google Scholar 

  • Beachy CK, Bruce RC (1992) Lunglessness in plethodontid salamanders is consistent with the hypothesis of a mountain stream origin: a response to Ruben and Boucot. Am Nat 139:839–847

    Google Scholar 

  • Beadle LC (1957) Respiration in the African swampworm Alma emini Mich. J Exp Biol 34:1–10

    CAS  Google Scholar 

  • Beadle LC (1974) The inland waters of tropical Africa: an introduction to tropical limnology. Longman, London

    Google Scholar 

  • Bean JL, Miller-Rich Kempton E, Homeier D (2010) A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b. Nature (London) 468:669–672

    CAS  Google Scholar 

  • Beauchamp RO, Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA (1984) A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 13:25–97

    PubMed  CAS  Google Scholar 

  • Becker KL (1984) The endocrine lung. In: Becker KL, Gadzar AF (eds) The endocrine lung in health and disease. WB Saunders, Philadelphia, PA, pp 3–46

    Google Scholar 

  • Becker HO, Bohme W, Perry SF (1989) The lung morphology of lizards (Reptilia: Varaniidae) and its taxonomic-phylogenetic meaning. Bonn Zool Beitr 40:27–56

    Google Scholar 

  • Becker S, Holighaus G, Gabrielczyk T, Unden G (1996) O2 as the regulatory signal for FNR-dependent gene regulation in Escherichia coli. J Bacteriol 178:45154521

    Google Scholar 

  • Beckner LV, Marshall LC (1965) On the origin and rise of oxygen concentration in the Earth’s atmosphere. J Atmos Sci 22:225–261

    Google Scholar 

  • Beers MF, Mulugeta S (2005) Surfactant protein C biosynthesis and its emerging role in conformational lung disease. Annu Rev Physiol 67:663–696

    PubMed  CAS  Google Scholar 

  • Beintema JJ, Stam WT, Hazes B, Smidt MP (1994) Evolution of arthropod hemocyanins andinsect storage proteins (Hexamerins). Mol Biol Evol 11:493–503

    PubMed  CAS  Google Scholar 

  • Bejan A (2000) Shape and structure, from engineering to nature. Cambridge University Press, Cambridge

    Google Scholar 

  • Belanger LF (1940) A study of the histological structure of the respiratory portion of the lungs of aquatic mammals. Am J Anat 67:437–461

    Google Scholar 

  • Belkin DA (1968) Aquatic respiration and underwater survival of two freshwater turtle species. Respir Physiol 4:1–14

    PubMed  CAS  Google Scholar 

  • Bell SC, Saunders MJ, Shale DJ (1996) Resting energy expenditure and oxygen cost of breathing in patients with cystic fibrosis. Thorax 51:126–131

    PubMed  CAS  Google Scholar 

  • Bellusci S, Henderson R, Winnier G, Oikawa T, Hogan BL (1996a) Evidence from normal expression and targeted mis-expression that bone morphogenetic protein-4 (BMP-4) plays a role in mouse embryonic lung morphogenesis. Development 122:1693–1702

    PubMed  CAS  Google Scholar 

  • Bellusci S, Furuta Y, Rush MG, Handerson R, Winnier G, Hogan BL (1996b) Involvement of sonic hedgehog (SHH) in mouse embryonic lung growth and morphogenesis. Development 124:53–63

    Google Scholar 

  • Bellusci S, Grindley J, Emoto H, Itoh N, Hogan BL (1997) Fibroblast growth factor-10 (FGF-10)and branching morphogenesis in the embryonic mouse lung. Development 124:4867–4878

    PubMed  CAS  Google Scholar 

  • Belman BW (1975) Some aspects of the circulatory physiology of the spiny lobster Panulirus interruptus. Mar Biol 29:295–305

    Google Scholar 

  • Bełtowski J (2004) Hydrogen sulfide as a biologically active mediator in the cardiovascular system. Postepy Hig Med Dosw 58:285–291

    Google Scholar 

  • Bełtowski J (2010) Hypoxia in renal medulla: implications for hydrogen sulfide signaling. J Pharmacol Exp Therap JPET#166637PiP: DOI: 10.1124/jpet.110.166637

    Google Scholar 

  • Bełtowski J, Jamroz A, Borkowska E (2004) Heme oxygenase and carbon monoxide in cardiovascular physiology and pathology. Postepy Hig Med Dosw 3:83–99

    Google Scholar 

  • Belvisi MG, Stretton CD, Yacoub M, Barnes PJ (1992) Nitric oxide is the endogenous neurotransmiter of bronchiodilator nerves in humans. Eur J Pharmacol 210:221–222

    PubMed  CAS  Google Scholar 

  • Bendall DS, Hove CJ, Nisbet EG, Nisbet RER (2008) Introduction: photosynthetic and atmospheric evolution. Phil Trans R Soc Lond B Biol Sci 363:2625–2628

    Google Scholar 

  • Bennett AF (1973) Ventilation in two species of lizards during rest and activity. Comp BiochemPhysiol 46A:653–671

    Google Scholar 

  • Bennett AF (1982) The energetics of reptilian activity. In: Gans C, Pough FH (eds) Biology of the reptilia, physiological ecology. Academic, New York, pp 155–199

    Google Scholar 

  • Bennett AF, Dawson WR (1976) Metabolism. In: Gans C, Dawson WR (eds) Biology of reptilia, vol 5. Academic, New York, pp 127–223

    Google Scholar 

  • Bennett AF, Tenney SM (1982) Comparative mechanics of mammalian respiratory system. Respir Physiol 49:131–140

    PubMed  CAS  Google Scholar 

  • Benson B, Hawgood S, Schilling J, Clements JA, Damm D et al (1985) Structure of canine pulmonary surfactant apoprotein: cDNA and complete amino acid sequence. Proc Natl Acad Sci USA 82:6379–6383

    PubMed  CAS  Google Scholar 

  • Bentley PJ, Shield JW (1973) Ventilation of toad lungs in absence of the buccopharyngeal pump. Nature (London) 243:538–539

    CAS  Google Scholar 

  • Berg K (1951) On the respiration of some molluscs from running and stagnant water. Ann Biol 33:561–567

    Google Scholar 

  • Berger M (1974) Oxygen consumption and the power of hovering hummingbirds at varying barometric and oxygen pressures. Die Naturwissenschaften 61:407

    PubMed  CAS  Google Scholar 

  • Bergman NM, Lenton TM, Watson AJ (2004) COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am J Sci 304:397–437

    CAS  Google Scholar 

  • Berner RA (1963) Electrodes studies of hydrogen sulfide in marine sediments. Geochim Cosmochim Acta 27:563–575

    CAS  Google Scholar 

  • Berner RA (2006a) GEOCARBSULE: a combined mdel for Phanerozoic atmospheric O2 and CO2. Geochim Cosmochim Acta 70:5653–5664

    CAS  Google Scholar 

  • Berner RA (2006b) Carbon, sulfur and O2 across the Permian-Triassic boundary. J Geochem Explor 88:416–418

    CAS  Google Scholar 

  • Berner RA, Canfield DE (1989) A new model for atmospheric oxygen over Phanerozoic time. Am J Sci 289:333–361

    PubMed  CAS  Google Scholar 

  • Berner RA, Kothavala Z (2001) GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 301:182–204

    CAS  Google Scholar 

  • Berner RA, Lasaga AC, Garrels RM (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the last 100 million years. Am J Sci 205:641–683

    Google Scholar 

  • Berner RA, Beerling DJ, Dudley R, Robinson JM, Wildman RA (2003) Phanerozoic atmospheric oxygen. Annu Rev Earth Planet Sci 31:105–134

    CAS  Google Scholar 

  • Berner RA, VandenBrooks JM, Wood PD (2007) Evolution- oxygen and evolution. Science 316:557–558

    PubMed  CAS  Google Scholar 

  • Bernhard W, Gebert A, Vieten G, Rau G, Hollfeld JM et al (2001a) Pulmonary surfactant in birds: coping with surface tension in a tubular lung. J Physiol Regul Inter Comp Physiol 281:R327–R337

    CAS  Google Scholar 

  • Bernhard W, Postle AD, Rau G, Freihorst J (2001b) Pulmonary and gastric surfactants. A comparison of the effect of surface requirements on function and phospholipids composition. Comp Biochem Physiol A Mol Integr Physiol 129:173–182

    PubMed  CAS  Google Scholar 

  • Bernhard W, Schmiedl A, Koster G, Orgeig S, Acevedo C et al (2007) Developmental changes in rat surfactant lipidomics in the context of species variability. Pediatr Pulmonol 42:794–804

    PubMed  Google Scholar 

  • Bernstein MH (1987) Respiration in flying birds. In: Sutton TJ (ed) Bird respiration, II. CRC Press, Boca Raton, FL, pp 43–73

    Google Scholar 

  • Bernstein MH (1990) Avian respiration and high altitude tolerance. In: Sutton JR, Coates GC, Remmers JE (eds) Hypoxia: the adaptations. B.C. Decker, Burlington, ON, pp 30–40

    Google Scholar 

  • Berra E, Benizri E, Ginouv A, Volmat V, Roux D, Pouyssgur J (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1α in normoxia. EMBO J 22:4082–4090

    PubMed  CAS  Google Scholar 

  • Berry S (2003) Endosymbiosis and the design of eukaryotic electron transport. Biochim Biophys Acta 1606:57–72

    PubMed  CAS  Google Scholar 

  • Berry WBN, Wilde P (1978) Progressive ventilation of the oceans: an explanation for the distribution of the lower Paleozoic black shales. Am J Sci 278:257–275

    Google Scholar 

  • Berse B, Brown LF, van de Water L, Dvorak HF, Senger DR (1992) Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumours. Mol Biol Cell 3:211–220

    PubMed  CAS  Google Scholar 

  • Betsholtz C, Karlson L, Lindahl P (2001) Developmental roles of platelet-derived growth factors. Bioessays 23:57–71

    Google Scholar 

  • Bettex-Galland M, Hughes GM (1973) Contractile filamentous material in the pillar cells of fish gills. J Cell Sci 13:359–366

    PubMed  CAS  Google Scholar 

  • Bewig B, Hackett NR, Crystal RG (1997) Tools of molecular biology used to study the lung. In: Crystal RG, West JB, Weibel ER, Barnes PJ (eds) Lung, scientific foundations, 2nd edn. Lippincott-Raven, Philadelphia, PA, pp 218–297

    Google Scholar 

  • Bhatia M (2005) Hydrogen sulfide as vasodilator. IUBMB Life 57:603–606

    PubMed  CAS  Google Scholar 

  • Bhatt AJ, Amin SB, Chess PR, Watkins RH, Maniscalco WM (2000) Expression of vascular endothelial factor and Flk-1 in developing and glucocoticoid-treated mouse lung. Pediatr Res 47:606–613

    PubMed  CAS  Google Scholar 

  • Bickford D, Iskandar D, Barlian A (2008) A lungless frog discovered on Borneo. Curr Biol 18:R374–R375

    PubMed  CAS  Google Scholar 

  • Bickler PE, Spragg RG, Hatman MT, White FN (1985) Distribution of ventilation in American alligator, Alligator mississippiensis. Am J Physiol Regul Integr Comp Physiol 249:R477–R481

    CAS  Google Scholar 

  • Bidani A, Crandall ED (1988) Velocity of CO2 exchanges in the lungs. Ann Rev Physiol 50:639–665

    CAS  Google Scholar 

  • Bikfalvi A, Klein S, Guiseppe P, Rifkin D (1997) Biological roles of fibroblast growth factor-2. Endocr Rev 18:26–45

    PubMed  CAS  Google Scholar 

  • Bilban M, Haschemi A, Wegiel B, Chin BY, Wagner O, Otterbein LE (2008) Heme oxygenase and carbon monoxide initiate hemeostatic signaling. J Mol Med 86:267–279

    PubMed  CAS  Google Scholar 

  • Billings L (2011) Exoplanets on the cheap. Nature (London) 470:27–29

    CAS  Google Scholar 

  • Black CP, Tenney SM (1980) Oxygen transport during progressive hypoxia in high altitude and sea level water-fowl. Respir Physiol 39:217–239

    PubMed  CAS  Google Scholar 

  • Black CP, Tenney SM, Kroonenburg MV (1978) Oxygen transport during progressive hypoxia in bar-headed geese (Anser anser) acclimated to sea level and 5600m. In: Piiper J (ed) Respiratory function in birds adult and embryonic. Springer, Berlin, pp 79–83

    Google Scholar 

  • Blackburn TM, Gaston KJ (1994) Animal body size distributions: patterns, mechanisms andimplications. Trends Ecol Evol 9:471–474

    PubMed  CAS  Google Scholar 

  • Blatchford JG (1971) Hemodynamics of Carcinus maenas (L). Comp Biochem Physiol 39A:193–202

    Google Scholar 

  • Blaustein AR, Wake DB, Sousa WP (1994) Amphibian decline: surging stability, persistence and susceptibility of populations to local and global extinction. Conserv Biol 8:60–71

    Google Scholar 

  • Block BA (1991) Endothermy in fish: thermogenesis, ecology and evolution. In: Hochachka PW, Mommsen T (eds) Biochemistry and molecular biology of fishes. Elsevier, Amsterdam, pp 269–298

    Google Scholar 

  • Bockheim JG (2002) Landform and soil developments in the McMurdo dry valleys, Antarctica: a regional synthesis. Arct Antarct Alp Res 34:308–317

    Google Scholar 

  • Bodegas ME, Montuengae LM, Sesma P (1993) Neuroendocrine diffuse system of the respiratory tract of Rana temporaria: an immunocytoshemical study. Gen Comp Endocrinol 100:145–161

    Google Scholar 

  • Boggs DF, Kilgore DL, Birchard GF (1984) Respiratory physiology of burrowing mammals and birds. Comp Biochem Physiol 77A:1–7

    Google Scholar 

  • Bogue CW, Lou LJ, Vasavada H, Wilson CM, Jacobs HC (1996) Expression of Hoxb genes in the developing mouse foregut and lung. Am J Respir Cell Biol 15:163–171

    CAS  Google Scholar 

  • Böhlke JE, Chaplin CCG (1968) Fishes of the Bahamas and adjacent tropical waters. Academy of Natural Sciences, Philadelphia, PA

    Google Scholar 

  • Bonner JT (1988) The evolution of complexity. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Booth DT (1995) Oxygen availability and embryonic development in sand snail (Polinices sordidus) egg masses. J Exp Biol 198:241–247

    PubMed  Google Scholar 

  • Borradaille LA, Potts FA, Eastham LES, Saunders JT (1963) Invertebrata (Revised by GA Kerkut), 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Bostroem B, Lochner W (1955) Uber den Sauerstoffverbrauch der Lunge. Pflugers Arch 260:511523

    Google Scholar 

  • Bostrom H, Gritli-Linde A, Betsholz C (2002) PDGF-A/PDGF alpha-receptor signalling is required for lung growth and the formation of alveoli but not for early lung branching morphogenesis. Dev Dyn 223:155–162

    PubMed  CAS  Google Scholar 

  • Boström H, Willetts K, Pekny M, Levéen P, Lindahl P et al (1996) PDGF-A signalling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 85:863–873

    PubMed  Google Scholar 

  • Bourbon JB, Chailley-Heu B (2001) Surfactant proteins in the digestive tract, mesentry, and other organs: evolutionary significance. Comp Biochem Physiol A Mol Integr Physiol 129:151–161

    PubMed  CAS  Google Scholar 

  • Bourne GB, Redmond JR (1977) Hemodynamics in the pink albarone. Haliotis corrugata. I. Pressure relations and pressure gradients in intact animals. J Exp Zool 200:9–16

    Google Scholar 

  • Boutilier RG (1990) Respiratory gas tensions in the environment. In: Boutilier RG (ed) Advances in comparative and environmental physiology, vol 6, Vertebrate gas exchange from environment to cell. Springer, Berlin, pp 1–13

    Google Scholar 

  • Boutilier RG, Heming TA, Iwama GK (1984) Physicochemical parameters for use in fish respiratory physiology. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 10A. Academic, New York, pp 403–456

    Google Scholar 

  • Brack A, Horneck G, Cockell CS, Bérces A, Belisheva NK et al (2010) Origin and evolution of life on terrestrial planets. Astrobiology 10:69–76

    PubMed  CAS  Google Scholar 

  • Bracken CP, Whitelaw ML, Peet DJ (2003) The hypoxia-inducible factors: key transcriptional regulators of hypoxic responses. Cell Mol Life Sci 60:1376–1393

    PubMed  CAS  Google Scholar 

  • Brackenbury JH (1987) Ventilation of the lung-air sac sytem. In: Seller TJ (ed) Bird respiration, vol I. CRC Press, Boca Raton, FL, pp 39–79

    Google Scholar 

  • Brackenbury JH (1991) Ventilation, gas exchange and oxygen delivery in flying and flightless birds. In: Woakes AJ, Grieshaber MK, Bridges CR (eds) Physiological strategies for gas exchange and metabolism. Cambridge University Press, Cambridge, pp 125–147

    Google Scholar 

  • Bradbury M (1979) The concept of blood-brain barrier. Wiley, New York

    Google Scholar 

  • Bradford SM, Taylor AC (1982) The respiration of Cancer pagurus under normoxic and hypoxic conditions. J Exp Biol 97:273–288

    Google Scholar 

  • Bradley TJ (2007) Control of the respiratory pattern in insects. Adv Exp Med Biol 618:211–220

    PubMed  Google Scholar 

  • Brainerd EL, Monroy JA (1998) Mechanics of lung ventilation in a large aquatic salamander, Siren lacertina. J Exp Biol 201:673–682

    PubMed  Google Scholar 

  • Brainerd EL, Owerkowicz T (2006) Functional morphology of aspiration breathing in tetrapods. Respir Physiol Neurobiol 154:73–88

    PubMed  Google Scholar 

  • Brandt A, Gooday AJ, Brandão SN, Brix S, Brökeland W et al (2007) First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature (London) 447:307–311

    CAS  Google Scholar 

  • Braulin EA, Wahler GM, Swayze CR, Lucas RV, Fox IJ (1986) Myoglobin facilitated oxygen diffusion maintains mechanical function of mammalian cardiac muscle. Cardiovasc Res 20:627–636

    Google Scholar 

  • Bredt DS, Snyder SH (1989) Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci USA 86:9030–9033

    PubMed  CAS  Google Scholar 

  • Breeze RG, Wheeldon EB (1977) The cells of the pulmonary airways. Am Rev Respir Dis 116:705–717

    PubMed  CAS  Google Scholar 

  • Breier G, Albrecht U, Sterrer S, Risau W (1992) Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114:521–532

    PubMed  CAS  Google Scholar 

  • Brett JR (1972) The metabolic demand for oxygen in fish, particularly salmonids and a comparison with other vertebrates. Respir Physiol 14:151–174

    PubMed  CAS  Google Scholar 

  • Bridges CR, Kester P, Scheid P (1980) Tracheal volume in the pupa of the saturniid moth Hyalophora cecropia determined with inert gases. Respir Physiol 40:281–291

    PubMed  CAS  Google Scholar 

  • Briggs DEG (1985) Gigantism in Paleozoic arthropods. Special Pap Palaentol 33:1571

    Google Scholar 

  • Brinkman H, Venkatesh B, Brenner S, Meyer A (2004) Nuclear protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates. Proc Natl Acad Aci USA 101:4900–4905

    Google Scholar 

  • Britton JC (1970) The Lucinidae (Mollusca: Bivalvia) of the western Antlantic Ocean. PhD dissertation, The George Washington University, Washington DC

    Google Scholar 

  • Brocher F (1920) Étude expérimentale sur le fonctionnement du vaisseau dorsal et sur lar circulation du sang chez le Insectes. III. Le Sphinx convolvuli. Arch Zool Exp Gén 60:1–45

    Google Scholar 

  • Brocher F (1931) Le mécanisme de la respiration et celui de la circulation du sang chez les insectes. Arch Zool Exp Gén 74:25–32

    Google Scholar 

  • Broecker WS (1982) Glacial to interglacial changes in ocean chemistry. Prog Oceagogr 2:151–197

    Google Scholar 

  • Broman I (1939) Die Embryonalentwicklung der Lungen bei Krokodilen und Seeschildkröten. Z Mikrosk Anat Forsch 84:224–306

    Google Scholar 

  • Brown RE, Brain JD, Wang N (1997) The avian respiratory system: a unique model for studies of respiratory toxicosis and for monitoring air quality. Environ Health Perspect 105:188–2000

    PubMed  CAS  Google Scholar 

  • Brown JH, Gupta VK, Li BL, Milne BT, Restrepo C, West GB (2002) The fractal nature of nature: power laws, ecological complexity and biodiversity. Phil Trans R Soc Lond B Biol Sci 357:619–626

    Google Scholar 

  • Brown TL, LeMay HE, Burston BE (2006) Chemistry: the central science, 10th edn. Pearson Education, Upper Saddle River, NJ

    Google Scholar 

  • Broyles RH (1981) Changes in the blood during amphibian metamorphosis. In: Gilbert LI, Frieden E (eds) Metamorphosis: a problem in developmental biology, 2nd edn. Plenum, New York, pp 461–490

    Google Scholar 

  • Brune A, Frenzel P, Cypionka K (2000) Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24:691–710

    PubMed  CAS  Google Scholar 

  • Brunelle JK, Bell EL, Quesada NM, Vercauteran K, Tiranti V et al (2005) Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 1:409–414

    PubMed  CAS  Google Scholar 

  • Brunori M (1975) Molecular adaptation to physiological requirements: the hemoblobin systems of trout. Curr Top Cell Regul 9:1–39

    PubMed  CAS  Google Scholar 

  • Bruns B, Gurtner GH (1973) A specific carrier for oxygen and carbon monoxide in the lung and the placenta. Drug Metab Disp 1:374

    Google Scholar 

  • Brusca RC, Brusca GJ (1990) Invertebrates. Sinauer, Sunderland, MA

    Google Scholar 

  • Bryant D, Mostov K (2007) Development: inflationary pressures. Nature (London) 449:549–550

    CAS  Google Scholar 

  • Buck JB (1948) The anatomy and physiology of the light organs in fire flies. Ann NY Acad Sci 9:397–482

    Google Scholar 

  • Buck JB (1962) Some physical aspects of insect respiration. Ann Rev Entomol 7:27–56

    Google Scholar 

  • Buckingham S, Avery ME (1962) Time of appearance of lung surfactant in the foetal mouse. Nature (London) 193:688–689

    CAS  Google Scholar 

  • Bugge J (1960) The heart of the African lungfish, Protopterus. Vidensk Meddr Dan Naturh Foren 123:193–210

    Google Scholar 

  • Bugge J, Weber RE (1999) Oxygen binding and its allosteric control in hemoglobin of the pulmonate snail, Biomphalaria glabrata. Am J Physiol 276:R347–R356

    PubMed  CAS  Google Scholar 

  • Bui ETN, Bradley PJ, Johnson PJ (1996) A common evolutionary origin for mitochondria and hydrogenosomes. Proc Natl Acad Sci USA 93:9651–9656

    PubMed  CAS  Google Scholar 

  • Buick R (2008) When did oxygenic photosynthesis evolve? Phil Trans R Soc Lond B Biol Sci 363:2731–2743

    CAS  Google Scholar 

  • Bunn HF, Poyton RO (1996) Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76:839–885

    PubMed  CAS  Google Scholar 

  • Burger RE, Meyer M, Werner G, Scheid P (1979) Gas exchange in the parabronchail lung of birds: experiments in unidirectionally ventilated ducks. Respir Physiol 36:19–37

    PubMed  CAS  Google Scholar 

  • Burggren WW (1979) Bimodal gas exchange during variation in environmental oxygen and carbon dioxide in the air-breathing fish Trichogaster trichopterus. J Exp Biol 82:197–213

    Google Scholar 

  • Burggren WW (1982) Pulmonary blood plasma filtration in reptiles: a ‘wet’ vertebrate lung? Science 215:77–78

    PubMed  CAS  Google Scholar 

  • Burggren WW (1989) Lung structure and function: amphibians. In: Wood SC (ed) Comparative pulmonary physiology: current concepts, vol 39. Marcel, New York, pp 153–191

    Google Scholar 

  • Burggren WW, Bemis WE (1992) Metabolism and ram gill ventilation in juvenile paddlefish, Polyodon spathula (Chondrostei: Polodontidae). Physiol Zool 65:515–539

    Google Scholar 

  • Burggren WW, Feder ME (1985) Skin breathing in vertebrates. Sci Am 253:106–118

    Google Scholar 

  • Burggren WW, Pinder AW (1991) Ontogeny of cardiovascular and respiratory physiology in lower vertebrates. Ann Rev Physiol 53:107–135

    CAS  Google Scholar 

  • Burggren WW, Roberts J (1991) Respiration and metabolism. In: Prosser CL (ed) Environmental and metabolic animal physiology. Wiley, New York, pp 353–435

    Google Scholar 

  • Burggren WW, Shelton G (1979) Gas exchange and transport during intermittent breathing in chelonian reptiles. J Exp Biol 82:75–92

    Google Scholar 

  • Burggren WW, West NH (1982) Changing importance of gills, lungs and skin during metamorphosis in the bullfrog Rana catesbeiana. Respir Physiol 47:151–164

    PubMed  CAS  Google Scholar 

  • Burggren WW, McMahon BR, Costerton JW (1974) Branchial water- and blood-flow patterns and the structure of the gills of the crayfish Procambarus clarkii. Can J Zool 52:1511–1518

    PubMed  CAS  Google Scholar 

  • Burggren WW, Glass ML, Johansen K (1977) Pulmonary ventilation/perfusion relationships in terrestrial and aquatic chelonian reptiles. Can J Zool 55:2024–2034

    PubMed  CAS  Google Scholar 

  • Burggren WW, Pinder AW, McMahon BR, Wheatly M, Doyle M (1985) Ventilation, circulation and their interactions in the land crabs, Cardisoma guanhumi. J Exp Biol 117:133–154

    Google Scholar 

  • Burggren WW, McMahon BR, Powers D (1991) Respiratory functions of blood. In: Prosser CL (ed) Environmental and metabolic animal physiology. Wiley, New York, pp 445–508

    Google Scholar 

  • Burleson ML (2009) Sensory innervation of the gills: O2-sensitive chemoreceptors and mechanoreceptors. Acta Histochem 111:196–206

    PubMed  Google Scholar 

  • Burleson ML, Milsom WK (2003) Comparative aspects of O2 chemoreception: anatomy, physiology, and environmental adaptations. In: Lahiri S, Semenza GL, Prabhakar NR (eds) Oxygen sensing: responses and adaptation to hypoxia. Marcel, New York, pp 685–707

    Google Scholar 

  • Burleson ML, Smartresk NJ, Milsom WK (1992) Afferent inputs associated with cardioventilatory control in fish. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish physiology, vol XIIB. Academic, San Diego, CA, pp 389–426

    Google Scholar 

  • Burmester T (2001) Molecular evolution of the hemocyanin superfamily. Mol Biol Evol 18:184–195

    PubMed  CAS  Google Scholar 

  • Burmester T (2002) Origin and evolution of arthropod hemocyanins and related proteins. J Comp Physiol B 172:95–107

    PubMed  CAS  Google Scholar 

  • Burnett BR (1972) Aspects of the circulatory system of Pollicipes polymerus JB Sowerby (Cirripedia: Thoracica). J Morphol 136:79–108

    Google Scholar 

  • Burnett LE, McMahon B (1987) Gas exchange hemolymph acid-base status and the role of branchial water stores during air exposure in three littoral crab species. Physiol Zool 60:27–36

    Google Scholar 

  • Burnett LE, DeFur PL, Jorgesen DD (1981) Application of the thermal dilution technique measuring cardiac output and assessing stroke volume in crabs. J Exp Zool 218:165–173

    Google Scholar 

  • Burns B, Gurtner GH (1973) A specific carrier for O2 and CO2 in the lung and placenta. Drug Metab Dispos 1:374–379

    PubMed  CAS  Google Scholar 

  • Burns B, Gurtner GH, Peavy H, Cha YN (1975) A specific carrier for oxygen and carbon dioxide. In: Junod AF, Haller R (eds) Lung metabolism. Academic, New York, pp 159–184

    Google Scholar 

  • Burns B, Young-Nam C, Purcell JM (1976) A specific carrier for O2 and CO2 in the lung: effects of volatile anaethetics on gas transfer and drug metabolism. Chest 69:316–321

    PubMed  CAS  Google Scholar 

  • Burri PH (1984) Fetal and postnatal development of the lung. Ann Rev Physiol 46:617–628

    CAS  Google Scholar 

  • Burri PH (1985a) Morphology and respiratory function of the alveolar unit. Int Arch Allergy Appl Immunol 76:2–12

    PubMed  Google Scholar 

  • Burri PH (1985b) Development and growth of the human lung. In: Fishman AP, Fisher AB (eds) Handbook of physiology, Section 3: The respiratory system. American Physiological Society, Bethesda, MD, pp 1–46

    Google Scholar 

  • Burri PH, Weibel ER (1977) Ultrastructure and morphometry of the developing lung. In: Hodson WA (ed) Development of the lung. Mercel, New York, pp 215–268

    Google Scholar 

  • Burri PH, Hlushchuk R, Djonov V (2004) Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn 231:474–488

    PubMed  Google Scholar 

  • Bursell E (1970) An introduction to insect physiology. Academic, London

    Google Scholar 

  • Burton RR, Smith AH (1967) Blood and air volumes in the avian lung. Poult Sci 47:85–91

    Google Scholar 

  • Bushnell PG, Brill RW (1992) Oxygen transport and cardiovascular responses in the skipkack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) exposed to acute hypoxia. J Comp Physiol B Biochem Syst Environ Physiol 162:131–143

    CAS  Google Scholar 

  • Butler PJ (1991) Exercise in birds. J Exp Biol 160:233–262

    Google Scholar 

  • Butler PJ, Metcalfe JD (1983) Control of respiration and circulation. In: Rankin JC, Pitcher TJ, Duggan R (eds) Control processes in fish physiology. Croom Helm, Beckenham, pp 41–65

    Google Scholar 

  • Butler PJ, Milsom WK, Woakes AJ (1984) Respiratory cardiovascular and metabolic adjustments during steady state swimming in the green turtle, Chelonis mydas. J Comp Physiol 154B:167–174

    Google Scholar 

  • Butterfield NJ (2009) Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7:1–7

    PubMed  CAS  Google Scholar 

  • Cabelli DE (2010) Superoxide dismutases and reactive oxygen species. Brookhaven National Laboratory, Brookhaven, Report No. BNL-93775-2010-BC, pp 1–32

    Google Scholar 

  • Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:493–501

    Google Scholar 

  • Cadigan KM, Nusse R (1997) Wnt signalling: a common theme in animal development. Genes Dev 11:1106–1115

    Google Scholar 

  • Cairns-Smith AG (1985) The first organisms. Sci Am 252:74–82

    Google Scholar 

  • Calder WA (1984) Size, function, and life history. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Callahan PS (1972) The evolution of insects. Holliday House, New York

    Google Scholar 

  • Callender GS (1940) Variations of the amounts of CO2 in different air currents. Quart J R Meteorol Soc 66:395–400

    Google Scholar 

  • Calvert JW, Coetzee WA, Lefer DJ (2010) Novel insights into hydrogen sulfide mediated cytoprotection. Antioxid Redox Signal 12:1203–1217

    PubMed  CAS  Google Scholar 

  • Came RE, Eiler JM, Veizer J, Azmy K, Brand U, Weidman CR (2007) Coupling of surface temperatures and atmospheric CO2 concentrations during the Paleozoic era. Nature (London) 449:198–201

    CAS  Google Scholar 

  • Cameron JC (1989) The respiratory physiology of animals. Oxford University Press, Oxford

    Google Scholar 

  • Cameron JN, Mecklenburg TA (1973) Aerial gas exchange in the coconut crab, Birgus latro, with some notes on Gecarcoidea lalandii. Respir Physiol 19:245–261

    PubMed  CAS  Google Scholar 

  • Cameron JN, Randall DJ, Davis JC (1977) Regulation of the ventilation-perfusion ratio in gills of Dasyatis sabina and Squalus suckleyi. Comp Biochem Physiol 39A:505–519

    Google Scholar 

  • Campanucci VA, Fearon IM, Nurse CA (2003) A novel O2-sensing mechanism in rat glossopharyngeal neurons mediated by a halothane-inhibitable background K+ conductance. J Physiol 548:731–743

    PubMed  CAS  Google Scholar 

  • Campbell EJM, Westlake EK, Cherniack RM (1959) The oxygen consumption and efficiency of the respiratory muscles of young male subjects. Clin Sci 18:55–64

    PubMed  CAS  Google Scholar 

  • Campeny R, Casinos A (1989) Densities and buoyancy in tadpoles of midwife toad, Alytes obstetricans. Zool Anz 223:6–12

    Google Scholar 

  • Canals M, Olivares R, Labra F, Novoa FF (2000) Ontogenetic changes in the fractal geometry of the bronchial tree in Rattus noevegicus. Biol Res 33:31–35

    PubMed  CAS  Google Scholar 

  • Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature (London) 396:450–453

    CAS  Google Scholar 

  • Canfield DE, Teske A (1996) Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature (London) 382:127–132

    CAS  Google Scholar 

  • Cantin AM, North SL, Hubbard RC, Crystal RG (1987) Normal alveolar epithelial lining fluid contains high levels of glutathione. J Appl Physiol 63:152–157

    PubMed  CAS  Google Scholar 

  • Cantin AM, Fells GA, Hubbard RC, Crystal RC (1990) Antioxidant macromolecules in the epithelial lining fluid of the normal human lower respiratory tract. J Clin Invest 86:962–971

    PubMed  CAS  Google Scholar 

  • Cantrell JM, Tucker A (1995) Low dose carbon monoxide does not reduce vasoconstriction in isolated rat lungs. Exp Lung Res 22:21–32

    Google Scholar 

  • Cao L, Mooney DJ (2007) Spatiotemporal control over growth factor signalling for therapeutic neovasculalization. Adv Drug Deliv Rev 59:1340–1350

    PubMed  CAS  Google Scholar 

  • Cao L, Blute TA, Eldred WD (2000) Localization of heme oxygenase-2 and modulation of cGMP levels by carbon monoxide and/or nitric oxide in the retina. Vis Neurosci 17:319–329

    PubMed  CAS  Google Scholar 

  • Cappellen PV, Ingall ED (1996) Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271:493–496

    PubMed  Google Scholar 

  • Cardoso WN (2000) Lung morphogenesis revisted: old facts, current ideas. Dev Dyn 219:121–130

    PubMed  CAS  Google Scholar 

  • Cardoso WV, Lü J (2006) Regulation of early lung morphogenesis: questions, facts and controversies. Development 133:1611–1624

    PubMed  CAS  Google Scholar 

  • Cardoso WV, Whitsett JA (2008) Resident cellular components of the lung: developmental aspects. Proc Am Thorac Soc 5:767–771

    PubMed  Google Scholar 

  • Cardoso WV, Itoh A, Nogawa H, Mason I, Brody JS (1997) FGF-1 and FGF-7 induce distinctpatterns of growth and differentiation in embryonic lung epithelium. Dev Dyn 208:398–405

    PubMed  CAS  Google Scholar 

  • Carey FG, Teal JM (1966) Heat conservation in tuna fish muscle. Proc Natl Acad Sci USA 56:1464–1469

    PubMed  CAS  Google Scholar 

  • Carmeliet P (2000) Gene therapy: stimulating angiogenesis or angioma-genesis. Nat Med 6:1102–1103

    PubMed  CAS  Google Scholar 

  • Carmeliet P, Collen D (2000) Molecular basis of angiogenesis: role of VEGF and VE-cadherin. Ann NY Acad Sci 902:249–262

    PubMed  CAS  Google Scholar 

  • Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature (London) 380:435–439

    CAS  Google Scholar 

  • Carpenter FL, Paton DC, Hixon MA (1983) Weight gain and adjustment of feeding territory size in migrant hummingbirds. Proc Natl Acad Sci USA 80:7259–7263

    PubMed  CAS  Google Scholar 

  • Carr AF (1952) Handbook of turtles. Cornell University, Ithaca, NY

    Google Scholar 

  • Carr AF, Goodman D (1970) Ecological implications of size and growth in Chelonia. Copeia 1970:783–786

    Google Scholar 

  • Carr AF, Ross P, Carr S (1974) Interesting behaviour of the green turtle, Chelonia mydas at a mid-ocean island breeding colony ground. Copeia 1974:702–706

    Google Scholar 

  • Carrier DR (1988) Ventilation in Iguana iguana: an action of tonic muscle. Am Zool 28:197A

    Google Scholar 

  • Carroll RL (1970) Quantitative aspects of the amphibian-reptilian transition. Forma et Functio 3:165–178

    Google Scholar 

  • Carroll RL (1988) Vertebrate palaeontology and evolution. Freeman, New York

    Google Scholar 

  • Carroll SB, Grenier J, Weatherbee SD (2001) From DNA to diversity: molecular genetics and the evolution of animal design. Blackwell, Cambridge

    Google Scholar 

  • Carter GS (1935) The fresh waters of the rain forest areas of British Guiana. J Linn Soc Lond Zool 39:147–193

    Google Scholar 

  • Carter GS (1955) The papyrus swamps of Uganda. W Heffer, Cambridge

    Google Scholar 

  • Carter GS, Beadle LC (1931) The fauna of the swamps of the Paraguayan Chaco in relation to its environment: respiratory adaptations in fishes. J Linn Soc Lond Zool 37:205–258

    Google Scholar 

  • Cartwright JHE, Piro O, Tuval I (2009) Fluid dynamics in developmental biology: moving fluids that shape ontogeny. HFSP J 3:77–93

    PubMed  Google Scholar 

  • Carvajal JA, Germain AM, Huidobro-Toro JP, Weiner CP (2000) Molecular mechanism of cGMP-mediated smooth muscle relaxation. J Cell Physiol 194:409–420

    Google Scholar 

  • Casals C, Garcia-Verdugo I (2005) Molecular and functional properties of surfactant protein A. In: Nag K (ed) Lung surfactant function and disorder. Marcel, New York, pp 57–84

    Google Scholar 

  • Catt JW, Henman M (2000) Toxic effects of oxygen on human and emberyo development. Hum Reprod 15:199–206

    PubMed  Google Scholar 

  • Cavalier-Smith T (2006) Cell evolution and Earth history: stasis and revolution. Phil Trans R Soc Lond B Biol Sci 361:969–1006

    CAS  Google Scholar 

  • Cayzac SH, Rocher A, Obeso A, González C, Riccardi D, Kemp PJ (2011) Spermine attenuates carotid body glomus cell oxygen sensing by inhibiting L-type Ca2+ channels. Respir Physiol Neurobiol 175:80–89

    PubMed  CAS  Google Scholar 

  • Centanin L, Ratcliffe PJ, Wappner P (2005) Reversion of lethality and growth defects to Fatiga oxygen sensor mutant flies by loss of Hypoxia-Inducible Factor-alpha/Sima. EMBO Rep 6:1070–1075

    PubMed  CAS  Google Scholar 

  • Centanin L, Dekanty A, Romero N, Irisarri M, Gorr TA, Wappner P (2008) Cell autonomy of HIF effects in Drosophila: tracheal cells sense hypoxia and induce terminal branch sprouting. Dev Cell 14:547–558

    PubMed  CAS  Google Scholar 

  • Centanin L, Gorr TA, Wappner P (2010) Tracheal remodeling in response to hypoxia. J Insect Physiol 56:447–454

    PubMed  CAS  Google Scholar 

  • Chabot D, Dutil J (1999) Reduced growth of Atlantic cod in non-lethal hypoxic conditions. J Fish Biol 55:472–491

    Google Scholar 

  • Chaby R, Garcia-Verdugo I, Espinassaous Q, Augusto LA (2005) Interactions between LPS and lung surfactant proteins. Innate Immunity 11:181–185

    CAS  Google Scholar 

  • Chandel N (2010) Mitochondrial complex III: an essential component of universal oxygen sensing machinery. Respir Physiol Neurobiol 174:175–181

    PubMed  CAS  Google Scholar 

  • Chandel NS, Budinger GRS (2007) The cellular basis for diverse responses to oxygen. Free Rad Biol Med 42:165–174

    PubMed  CAS  Google Scholar 

  • Chang DM, Mark R, Miller SL, Strathearn GE (1983) Prebiotic organic syntheses and the origin of life. In: Schopf JW (ed) Earth's earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 53–92

    Google Scholar 

  • Chapelle G, Peck LS (1999) Polar gigantism dictated by oxygen availability. Nature (London) 399:114–115

    CAS  Google Scholar 

  • Chapman RF (1998) The insects: structure and function. Cambridge University Press, Cambridge

    Google Scholar 

  • Chapman DJ, Ragan MA (1980) Evolution of biochemical pathways: evidence from comparative biochemistry. Ann Rev Plant Physiol 31:639–678

    CAS  Google Scholar 

  • Chapman DJ, Schopf JW (1983) Biological and biochemical effects of the development of an aerobic environment. In: Schopf JW (ed) Earth's earliest atmosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 302–320

    Google Scholar 

  • Chapman CB, Jensen D, Wildenthal K (1963) On circulatory control mechanisms in the Pacific hagfish. Circ Res 12:427–440

    CAS  Google Scholar 

  • Chapman DL, Carlton DP, Nielson DW, Cummings JJ, Poulain FR, Bland RD (1994) Changes in lung liquid during spontaneous labor in fetal sheep. J Appl Physiol 76:523–530

    PubMed  CAS  Google Scholar 

  • Chapman JT, Otterbein LE, Elias JA, Choi AMK (2001) Carbon monoxide attenuates aeroallergen-induced inflammation in mice. Am J Physiol Lung Cell Mol Physiol 281:L209–L216

    PubMed  CAS  Google Scholar 

  • Chatterjee PK (2004) Water-soluble carbon monoxide-releasing molecules: helping to elucidate the vascular activity of the silent killer. Br J Pharmacol 142:391–393

    PubMed  CAS  Google Scholar 

  • Chatterjee PK (2007) Physiological activities of carbon monoxide-releasing molecules: Ca ira. Br J Pharmacol 150:961–962

    PubMed  CAS  Google Scholar 

  • Chazaud C, Dolle P, Rossant J, Mollard R (2003) Retinoic acid signalling regulates murine bronchial tubule formation. Mech Dev 120:691–700

    PubMed  CAS  Google Scholar 

  • Chen WT, Chen JM, Mueller SC (1986) Coupled expression and colocalization of 140K cell adhesion molecules, fibronectin, and laminin during morphogenesis and cytodifferentiation of chick lung cells. J cell Biol 103:1073–1090

    PubMed  CAS  Google Scholar 

  • Chen CQ, Xin H, Zhu YZ (2007) Hydrogen sulfide: third gaseous transmitter, but with great pharmacological potential. Acta Pharmacol Sin 28:1709–1716

    PubMed  CAS  Google Scholar 

  • Chen H, Zhuang F, Liu YH, Xu B, Del Moral P et al (2008) TGF-beta receptor II in epithelial versus mesenchyme plays distinct roles in the developing lung. Eur Respir J 32:285–295

    PubMed  CAS  Google Scholar 

  • Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C et al (2010a) S-glutathionylation uncoupls eNOS and regulates its cellular and vascular function. Nature (London) 468:1115–1118

    CAS  Google Scholar 

  • Chen H, Gheorghiu S, Huxley VH, Pfeifer P (2010b) Reverse engineering of oxygen transport in the lung: adaptation to changing demands and resources through space-filling networks. PLoS Comput Biol 6(8):e1000902. doi:10.1371/journal.pcbi.1000902

    Google Scholar 

  • Cheng CHC, Detrich HW (2007) Molecular ecophysiology of Antarctic notothenioid fishes. Phil Trans R Soc Lond B Biol Sci 362:2215–2232

    CAS  Google Scholar 

  • Cherniack RM (1959) The oxygen consumption and efficiency of the respiratory muscles in health and emphysema. J Clin Invest 38:494–499

    PubMed  CAS  Google Scholar 

  • Chevalier G, Collet AJ (1972) In vivo incorporation of choline-3H, leucine-3H, and galactose-3H in alveolar type-II pneumocytes in relation to surfactant synthesis: a quantitative radiographic study in mouse by electron microscopy. Anat Rec 174:289–310

    PubMed  CAS  Google Scholar 

  • Chiaria C, Giovannini I, Giuliante F, Vellone M, Ardito F et al (2010) Significance of hemoglobin concentration in determining blood CO2-binding capacity in critical illness. Respir Physiol Neurolbiol 172:32–36

    Google Scholar 

  • Cho T, Chan W, Cutz E (1989) Distribution and frequency of neuroepithelial bodies in post-natal rabbit lung: quantitative study with monoclonal antibody against serotonin. Cell Tissue Res 255:353–362

    PubMed  CAS  Google Scholar 

  • Choi AMK, Alam J (1996) Heme-oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in antioxidant-induced lung injury. Am J Respir Cell Mol Biol 15:9–19

    PubMed  CAS  Google Scholar 

  • Chown SL, Gibbs AG, Hetz SK, Klok CJ, Lighton JRB, Marais E (2006) Discontinuous gas exchange in insects: a clarification of hypotheses and approaches. Physiol Biochem Zool 79:333–343

    PubMed  CAS  Google Scholar 

  • Chuang PT, McMahon AP (1999) Vertebrate Hedgehog signalling modulated by induction of a hedgehog-binding protein. Nature (London) 397:617–621

    CAS  Google Scholar 

  • Chuang PT, McMahon AP (2003) Branching morphogenesis of the lung: new molecular insights into an old problem. Trends Cell Biol 13:86–91

    PubMed  CAS  Google Scholar 

  • Chuang PT, Kawcak T, McMahon AP (2003) Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding protein, Hip1, modulates FGF signaling during branching morphogenesis of the lung. Genes Dev 17:342–347

    PubMed  CAS  Google Scholar 

  • Chung HT, Choi BM, Kwon YG, Kim YM (2008) Interactive relations between nitric oxide (NO) and carbon monoxide (CO): heme oxygenase-1/CO pathway is a key modulator in NO-mediated antiapoptosis and anti-inflammation. Methods Enzymol 441:329–338

    PubMed  CAS  Google Scholar 

  • Claessens LPAM, O’Connor PM, Unwin DM (2009) Respiratory evolution facilitated the origin of pterosaur flight and aerial gigantism. PLoS One 4(2):e4497. doi:10.1371/journal.pone.0004497

    PubMed  Google Scholar 

  • Clark LC, Gollan F (1966) Survival of mammals breathing organic lequids equilibrated with oxygen at atmospheric pressure. Science 152:1755–1756

    PubMed  CAS  Google Scholar 

  • Clarke FW (1911) The data of geochemistry. US Geol Surv Bull 491

    Google Scholar 

  • Clarke MR (1962) Respiratory and swimming movements in the cephalopod Crachia scabra. Nature (London) 196:351–352

    Google Scholar 

  • Clausen G, Ersland A (1968) The respiratory properties of the blood of two diving rodents, the beaver and the water vole. Respir Physiol 5:350–359

    PubMed  CAS  Google Scholar 

  • Clegg JS (2001) Cryptobiosis – a peculiar state of biological organization. Comp Biochem Physiol B Biochem Mol Biol 128:613–624

    PubMed  CAS  Google Scholar 

  • Clement AM, Long JA (2010) Air-breathing adaptation in a marine Devonian lungfish. Biol Lett 6:509–512

    PubMed  Google Scholar 

  • Clements JA (1957) Surface tension of lung extracts. Proc Soc Exp Biol Med 95:170–172

    PubMed  CAS  Google Scholar 

  • Clements JA, Avery ME (1998) Lung surfactant and neonatal respiratory distress syndrome. Am J Respir Crit Care Med 157:S59–S66

    PubMed  CAS  Google Scholar 

  • Cloud P (1968) Atmospheric and hydrospheric evolution on the primitive earth. Science 160:729–736

    PubMed  CAS  Google Scholar 

  • Cloud P (1973) Paleoecological significance of the banded iron-formation. Econ Geol 68:1135–1143

    CAS  Google Scholar 

  • Cloud P (1974) Evolution of ecosystems. Am Sci 62:54–66

    CAS  Google Scholar 

  • Cloud P (1988) Oasis in space. WW Norton, New York

    Google Scholar 

  • Cloud P (1993) Early biogeologic history: the emergence of a paradigm. In: Schopf JW (ed) Earth's earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 14–31

    Google Scholar 

  • Coburn RF (1979) Mechanisms of carbon monoxide toxicity. Prev Med 8:310–322

    PubMed  CAS  Google Scholar 

  • Cocca E, Ratnayake-Lecamwasam M, Packer SK, Camardella L, Ciaramella M, diPrisco G, Detrich HW (1997) Do the hemoglobinless ice-fishes have globin genes? Comp Biochem Physiol 118A:1027–1030

    CAS  Google Scholar 

  • Cochrane CG (1991) Cellular injury by oxidants. Am J Med 91:23S–30S

    PubMed  CAS  Google Scholar 

  • Cockell CS, Kaltenegger L, Raven JA (2009) Cryptic photosynthesis - extrasolar planetary oxygen without a surface biological signature. Astrobiology 9:623–636

    PubMed  Google Scholar 

  • Codd JR, Manning PL, Norell MA, Perry SF (2008) Avian-like mechanics in maniraptoran dinosaurs. Proc R Soc Lond B Biol Sci 275:157–162

    Google Scholar 

  • Colvin JS, Feldman B, Nadeau JH, Goldfarb M, Ornitz DM (1999) Genomic organization and embryonic expression of the mouse fibroblast growth factor 9 gene. Dev Dyn 216:72–88

    PubMed  CAS  Google Scholar 

  • Colvin JS, White AC, Pratt SJ, Ornitz DM (2001) Lung hypoplasia and neonatal death in FGF9-null mice identify this gene as an essential regulator of lung mesenchyme. Development 128:2095–2106

    PubMed  CAS  Google Scholar 

  • Comhair SA, Erzurum SC (2002) Antioxidant responses to oxidant-mediated lung diseases. Am J Physiol Lung Cell Mol Physiol 283:L246–L255

    PubMed  CAS  Google Scholar 

  • Comroe JH (1974) Physiology of respiration: an introductory text. Year Book Medical, Chicago, IL

    Google Scholar 

  • Condon JC, Jeyasuria P, Faust JM, Mendelson CR (2010) Surfactant protein secreted by the maturing mouse fetal lung acts as a hormone that signals the initiation of parturition. Proc Natl Acad Sci: www.ProcNatlAcadSci,USA.org/content/101/14/4978.full

  • Connolly MJ, Aaronson PI (2010) Cell redox state and hypoxic pulmonary vasoconstriction: recent evidence and possible mechanisms. Respir Physiol Neurobiol 174:165–174

    PubMed  CAS  Google Scholar 

  • Contreras HL, Bradley TJ (2010) Transitions in insect respiratory patterns are controlled by changes in metabolic rate. J Insect Physiol 56:522–528

    PubMed  CAS  Google Scholar 

  • Conway EJ, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovasc Res 49:507–521

    PubMed  CAS  Google Scholar 

  • Cook GA, Lauer CM (1968) Oxygen. In: Clifford HA (ed) The encyclopedia of the chemical elements. Reinhold Book Corporation, New York, pp 499–512

    Google Scholar 

  • Cooper CE (1999) Nitric oxide and iron proteins. Biochim Biophys Acta 1411:290–309

    PubMed  CAS  Google Scholar 

  • Cope ED (1885) The retrograde metamorphosis of Siren. Am Nat 19:1226–1227

    Google Scholar 

  • Coraux C, Meneguzzi G, Rousselle P, Puchelle E, Gaillard D (2002) Distribution of laminin-5, integrin receptors, and branching morphogenesis during human fetal lung development. Dev Dyn 225:176–185

    PubMed  CAS  Google Scholar 

  • Cosgrove WB, Schwartz JB (1965) The properties and function of the blood pigment of the earthworm Lumbricus terrestris. Physiol Zool 38:206–212

    Google Scholar 

  • Costa RH, Kalinichenko VV, Lim L (2001) Transcription factors in mouse lung development and function. Am J Physiol Lung Cell Mol Physiol 280:L823–L838

    PubMed  CAS  Google Scholar 

  • Cournand A, Richards DW, Bader RA, Bader ME, Fishman AP (1954) The oxygen cost of breathing. Trans Assoc Am Physicians 67:162–173

    PubMed  CAS  Google Scholar 

  • Couroucli XI, Liang YW, Jiang W, Barrios R, Moorthy B (2006a) Attenuation of oxygen-induced abnormal lung maturation in rats by retinoic acid: possible role of cytochrome P4501A enzymes. J Pharmacol Exp Ther 317:946–954

    PubMed  CAS  Google Scholar 

  • Couroucli XI, Wei Y-H, Jiang W, Muthiah K, Evey LW et al (2006b) Modulation of pulmonary cytochrome P4501A1 expression by hyperoxia and inhaled nitric oxide in the newborn rat: implications for injury. Pediatr Res 59:401–406

    PubMed  CAS  Google Scholar 

  • Courtillot V (1999) Evolutionary catastrophes: the science of mass extinction. Cambridge University Press, Cambridge

    Google Scholar 

  • Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM et al (2006) HIF-2α regulated Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumour growth. Genes Dev 20:557–570

    PubMed  CAS  Google Scholar 

  • Cox CB (1967) Cutaneous respiration and the origin of he modern Amphibia. Proc Linn Soc Lond 178:37–47

    Google Scholar 

  • Craig P (1975) Respiration and body weight in the reptilian genus Lacertus: a physiological, anatomical and morphometric study. PhD Thesis, University of Bristol, England

    Google Scholar 

  • Crapo JD (1986) Morphologic changes in pulmonary oxygen toxicity. Annu Rev Physiol 48:721–731

    PubMed  CAS  Google Scholar 

  • Crapo JD (1987) Hyperoxia: lung injury and localization of antioxidant defenses. In: Dejours P (ed) Comparative physiology of environmental adaptations, vol 2. Karger, Basel, pp 163–176

    Google Scholar 

  • Crapo JD, Crapo RO (1983) Comparison of total lung diffusion capacity and the membrane component of diffusion capacity as determined by physiologic and by morphometric techniques. Respir Physiol 51:183–194

    PubMed  CAS  Google Scholar 

  • Crapo JD, Peters-Golden M, Marsh-Salin J, Shelbourne JS (1978) Pathologic changes in the lungs of oxygen-adapted rats. A morphometric analysis. Lab Invest 39:640–653

    PubMed  CAS  Google Scholar 

  • Crapo JD, Barry BE, Forcue HA, Shelbourne J (1980) Structural and biochemical changes in rat lungs occurring during exposure to lethal and adaptive doses of oxygen. Am Rev Respir Dis 122:123–143

    PubMed  CAS  Google Scholar 

  • Crapo JD, Barry BE, Gehr P, Bachofen M, Weibel ER (1982) Cell number and cell characteristics of the normal human lung. Am Rev Respir Dis 125:332–337

    Google Scholar 

  • Crawford EC, Gatz RN, Magnussen H, Perry SF, Piiper J (1976) Lung volumes, pulmonary blood flow and carbon monoxide diffusing capacity of turtles. J Comp Physiol 107:169–178

    Google Scholar 

  • Crawford RMM, Hendry GAF, Goodman BA (eds) (1994) Oxygen and environmental stress in plants. Proc R Soc Edinb B 102:1–549

    Google Scholar 

  • Creuwels LA, van Golde LM, Haagsman HP (1997) The pulmonary surfactant system: biochemical and clinical aspects. Lung 175:1–39. doi:10.1007/PL00007554

    PubMed  CAS  Google Scholar 

  • Crocker CE, Farrell AP, Gamperl AK, Cech JJ (2000) Cardiorespiratory responses of white sturgeon to environmental hypercapnia. Am J Physiol Regul Integr Comp Physiol 279:R617–R628

    PubMed  CAS  Google Scholar 

  • Crone C, Lassen NA (1970) Capillary permeability. The transfer of molecules and ions between capillary blood and tissue. Munksgaaard, Copenhagen

    Google Scholar 

  • Cross SS (1997) Fractal in pathology. J Pathol 182:1–8

    PubMed  CAS  Google Scholar 

  • Cross CE, Halliwell B, Allen A (1984) Antioxidant protection: a function of tracheobronchial and gastrointestinal mucus. Lancet 1:1328–1329

    PubMed  CAS  Google Scholar 

  • Crouch EC (1998) Collectins and pulmonary host defense. Am J Respir Cell Mol Biol 19:177–201

    PubMed  CAS  Google Scholar 

  • Crouch EC, Martin GR, Brody JS, Laurie GW (1997) Basement membranes. In: Crystal RD, West JB, Weibel ER, Barnes PJ (eds) The lung: scientific foundations, 2nd edn. Lippincott-Raven, Philadelphia, PA, pp 769–791

    Google Scholar 

  • Crowder WC, Nie M, Ultsch GR (1998) Oxygen uptake in bullfrog tadpoles (Rana catesbeiana). J Exp Zool 280:121–134

    PubMed  CAS  Google Scholar 

  • Culotta E, Koshland DE (1992) NO news is good news: significant advances and discoveries of 1992 (Molecule of the Year). Science 258:1862–1864

    PubMed  CAS  Google Scholar 

  • Cunningham DJ (1986) The oxygen secretion controversy. Lancet 1(8482):683

    PubMed  CAS  Google Scholar 

  • Currie JA (1984) Gas diffusion through soil crumbs: the effects of compaction and wetting. J Soil Sci 35:1–10

    CAS  Google Scholar 

  • Curstedt T, Jörnvall H, Robertson B, Bergman T, Berggren P (1987) Two hydrophobic low-molecular mass protein fractions of pulmonary surfactant: characterization and biophysical activity. Eur J Biochem 168:255–262

    PubMed  CAS  Google Scholar 

  • Curtis SE, Peek JT, Kelly DR (1993) Partial liquid breathing with perfluocarbon improves arterial oxygenation in acute canine lung injury. J Appl Physiol 75:2696–2702

    PubMed  CAS  Google Scholar 

  • Curtis NE, Assey SE, Schwartz JA, Maugel TK, Pierce SK (2005) The intracellular, functionalchloroplasts in adult sea slugs (Elysia crispate) come from several algal species, and are also different from those in juvenile slugs. Microsci Microanal 11:1194–1195

    Google Scholar 

  • Cutz E, Jackson A (1999) Neuroepithelial bodies as airway oxygen sensors. Respir Physiol 115:201–214

    PubMed  CAS  Google Scholar 

  • Cutz E, Goniakowska-Witalinska L, Chan W (1986) An immunohistochemical study of regulatory peptides in lungs of amphibians. Cell Tissue Res 244:227–233

    CAS  Google Scholar 

  • Czopek J (1962) Vascularization of respiratory surfaces in some caudata. Copeia 1962:576–587

    Google Scholar 

  • Czopek J (1965) Quantitative studies of the morphology of respiratory surfaces in amphibians. Acta Anat 62:296–323

    PubMed  CAS  Google Scholar 

  • Czopek J (1966) Quantitative studies of the morphology of respiratory surfaces in amphibians. Acta Anat 62:296–323

    Google Scholar 

  • D’Angio CT, Maniscalco WM (2002) The role of vascular growth factors in hyperoxia-induced injury to the developing lung. Front Biosci 7:1609–1623

    Google Scholar 

  • Daborn K, Cozzi RRF, Marshall WS (2001) Dynamics of pavement cell-chloride cell interactions during abrupt salinity change in Fundulus heteroclitus. J Exp Biol 204:1889–1899

    PubMed  CAS  Google Scholar 

  • Daff S (2010) NO synthetase: structures and mechanisms. Nitric Oxide 23:1–11

    PubMed  CAS  Google Scholar 

  • Dahr E (1924) Die Atmungsbewegungen der Landpulmonaten. Lund Univ Aarsskr NF Avd 20:1–19

    Google Scholar 

  • Dahr E (1927) Studien uber die Respirationder Landpulmonaten. Lund Univ Aarsskr NF Avd 23:1–118

    Google Scholar 

  • Daniels CB, Orgeig S (2001) The comparative biology of pulmonary surfactant: past, present and future. Comp Biochem Physiol A 129:9–36

    CAS  Google Scholar 

  • Daniels CB, Orgeig S, Wilsen J, Nicholas TE (1994) Pulmonary type surfactants in the lungs of terrestrial and aquatic amphibians. Respir Physiol 95:24–58

    Google Scholar 

  • Daniels CB, Orgeig S, Smits AW (1995) The composition and function of reptilian pulmonary surfactant. Respir Physiol 102:121–135

    PubMed  CAS  Google Scholar 

  • Daniels CB, Orgeig S, Wood PG, Sullivan LC, Lopatko OV, Smits AW (1998) The changing state of surfactant lipids: new insights from ancient animals. Am Zool 38:305–320

    CAS  Google Scholar 

  • Daniels CB, Lopatko OV, Orgeig S (2001) Evolution of surface activity related functions of vertebrate pulmonary surfactant. Clin Exp Pharmacol Physiol 25:716–721

    Google Scholar 

  • Danovaro R, Dell’Anno A, Pusceddu A, Gambi C, Heiner I, Møbjerg R (2010) The first metazoan living in permanently anoxic conditions. BMC Biol 8:30. doi:10.1186/1741-7007-8-30

    PubMed  Google Scholar 

  • Darnell RM (1949) The aortic arches and associated arteries of caudate amphibians. Copeia 1949:18–31

    Google Scholar 

  • Dauer DM (1993) Biological criteria, environmental health and estuarine macrobenthic community structure. Mar Poll Bull 26:249–257

    Google Scholar 

  • David H (1977) Quantitative ultrstructural data of animal and human cells. Gustav Fischer, Stuttgart

    Google Scholar 

  • David LA, Alm E (2011) Rapid evolutionary innovation during an Archean genetic expansion. Nature (London) 469:93–96

    CAS  Google Scholar 

  • Davie P, Farrell AP (1991) Cardiac performance of an isolated heart preparation from the dogfish (Squalus acanthias): the effects of hypoxia and coronary artery perfusion. Can J Zool 69:1822–1828

    Google Scholar 

  • Davies PCW, Benner SA, Cleland CE, Lineweaver CH, McKay CP, Wolfe-Simon F (2009) Signatures of a shadow biosphere. Astrobiology 9:241–249

    PubMed  Google Scholar 

  • Davis WB, Bennard SI, Bitterman PB, Crystal RG (1983) Pulmonary oxygen toxicity. Early reversible changes in human alveolar structures induced by hyperoxia. New Engl J Med 309:878–883

    PubMed  CAS  Google Scholar 

  • D'AW T (1942) On growth and form, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • de Beer G (1954) Archeopteryx lithographica. British Museum of Natural History, London

    Google Scholar 

  • De Langhe SP, Reynolds SD (2008) Wnt signalling in lung organogenesis. Organogenesis 4:100–108

    PubMed  Google Scholar 

  • De Langhe SP, Sala FG, Del Moral PM, Fairbanks TJ, Yamada KM et al (2005) Dickkopf-1 (DKK1) reveals that fibronectin is a major target of Wnt signalling in branching morphogenesis of the mouse embryonic lung. Dev Biol 277:316–331

    PubMed  Google Scholar 

  • De Mello DE, Sawyer D, Galvin N, Reid LM (1997) Early fetal development of lung vasculature. Am J Respir Cell Mol Biol 16:568–581

    Google Scholar 

  • De Moerlooze L, Spencer-Dene B, Revest J, Hajihosseini M, Rosewell I, Dickson C (2000) An important role for the IIIb isoform of fibroblast growth factor receptor-2 (FGFR-2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 7:483–492

    Google Scholar 

  • De Moraes MF, Holler S, da Costa OT, Glass ML, Fernandes MN, Perry SF (2005) Morphometric comparison of the respiratory organs in the South American lungfish Lepidosiren paradoxa (Dipnoi). Physiol Biochem Zool 78:546–559

    PubMed  Google Scholar 

  • Deamer D, Szostak JW (2010) The origins of life. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  • Dean JB (2010) Theory of gastric CO2 ventilation and its control during respiratory acidosis: implications for central chemosensitivity, pH regulation, and disease causing chronic CO2 retention. Respir Physiol Neurobiol 175:189–209

    PubMed  Google Scholar 

  • Dearmer D (2005) A giant step towards artificial life? Trends Biotechnol 23:336–338

    Google Scholar 

  • DeFur PL, Mangum CP (1979) The effects of environmental variables on the heart rate of invertebrates. Comp Biochem Physiol A 62:283–294

    Google Scholar 

  • DeFur PL, McMahon BR (1978) Respiratory responses of Cancer productus to air exposure. Am Zool 18:605A

    Google Scholar 

  • DeFur PL, Pease AL (1988) Metabolic and Respiratory compensation during long term hypoxia in blue crabs, Callinectes sapidus. In: Lynch MP, Krome EC (eds) Understanding the estuary, advances in chesapeake bay research, Chesapeake Research Consortium Publication 129. CRC Press, Edgewater, MD

    Google Scholar 

  • Dehadrai PV, Tripathi SD (1976) Environment and ecology of freshwater air-breathing teleosts. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic, London, pp 39–72

    Google Scholar 

  • Dejours P (1973) Problems of control of breathing in fishes. In: Bolis L, Schmidt-Nielsen K, Madrell SHP (eds) Comparative physiology. Elsevier, Amsterdam, pp 117–133

    Google Scholar 

  • Dejours P (1982) Mount Everest and beyond: breathing air. In: Taylor CR, Johansen K, Bolis L (eds) A companion to animal physiology. Cambridge University Press, Cambridge, pp 17–27

    Google Scholar 

  • Dejours P (1988) Respiration in water and air: adaptations, regulation and evolution. Elsevier, New York

    Google Scholar 

  • Dejours P (1989) From comparative physiology of respiration to several problems of environmental adoptions and to evolution. J Physiol (London) 410:1–19

    CAS  Google Scholar 

  • Dejours P (1990) Comparative aspects of maximal oxgen consumption. Respir Physiol 80:155–162

    PubMed  CAS  Google Scholar 

  • Dejours P (1994) Environmental factors as determinants in bimodal breathing: an introductory overview. Am Zool 34:178–183

    Google Scholar 

  • Dejours P (1998) Lungs and gills for gas exchange: overview. In: Wiebel ER, Taylor CR, Bolis L (eds) Principles of animal design. Cambridge University Press, Cambridge, pp 165–167

    Google Scholar 

  • Dejours P, Garey WF, Rahn H (1970) Comparison of ventilatory and circulatory flow rates between animals in various physiological conditions. Respir Physiol 9:108–117

    PubMed  CAS  Google Scholar 

  • Dekanty A, Lavista-Llanos S, Irisarri M, Oldham S, Wappner P (2005) The insulin-P13K/TOR pathway induces a HIF-dependent transcriptional response in Drosophila by promoting nuclear localization of HIF-{alpha}/Sima. J Cell Sci 118:5431–5441

    PubMed  CAS  Google Scholar 

  • Del Corral JPD (1995) Anatomy and histology of the lung and air sacs of birds. In: Pastor LM (ed) Histology, ultrastructure and immunohistochemistry of the respiratory organs in non-mammalian vertebrates. Publicaciones de la Universitatd de University of Murcia, Murcia (Spain), pp 179–233

    Google Scholar 

  • DeLaney RG, Fishman AP (1977) Analysis of lung ventilation in the aestivating lungfish Protopterus aethiopicus. Am J Physiol 233:R181–R187

    PubMed  CAS  Google Scholar 

  • DeLaney RG, Lahiri GS, Fishman AP (1974) Aestivation of the African lungfish Protopterus aethiopicus: cardiovascular and respiratory functions. J Exp Biol 61:111–118

    PubMed  CAS  Google Scholar 

  • Demoll R (1927) Untersuchungen über die Atmung der Insekten. Z Biol 87:8–22

    Google Scholar 

  • Dempsey JA, Harmas CA, Ainsworth DM (1996) Respiratory muscle perfusion and energetics during exercise. Med Sci Sports Exerc 28:1123–1128

    PubMed  CAS  Google Scholar 

  • Denney MW (1993) Air and water: the biology and physics of life's media. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Denton EJ, Shaw TI, Gilpin-Brown JB (1958) Bathyscaphoid squid. Nature (London): 1810

    Google Scholar 

  • Des Marais DJ (1998) Earth’s early biosphere. Gravity Space Biol Bull 11:23–30

    CAS  Google Scholar 

  • Desai TJ, Cardoso WV (2002) Growth factors in lung development and disease: friends or foe? Respir Res 3:2

    PubMed  Google Scholar 

  • Dessy C, Ferron O (2004) Pathophysiological roles of nitric oxide. Curr Med Chem 3:207–216

    CAS  Google Scholar 

  • Dey RD, Mayer B, Said SI (1993) Colocalization of vasoactive intestinal peptide and nitric oxide synthetase in neurons of the ferret trachea. Neuroscience 54:839–843

    PubMed  CAS  Google Scholar 

  • Di Magno L, Chan CK, Jia Y, Lang MJ, Newman JR, Mets L, Fleming GR, Haselkorn R (1995) Energy transfer and trapping in photosystem I: reaction centers from cyanobacteria. Proc Natl Acad Sci USA 92:2715–2719

    Google Scholar 

  • Diaz JR, Rosenberg R (1995) Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography Mar Biol Annu Rev 33:245–303

    Google Scholar 

  • Dierichs R (1975) Electron microscopic studies of the lung of the frog II. Topography of the inner surface by scanning and transmission electron microscopy. Cell Tissue Res 160:399–410

    PubMed  CAS  Google Scholar 

  • Dietl P, Haller T (2005) Exocytosis of lung surfactant: from the secretory vesicle to the air-liquid interface. Annu Rev Physiol 67:595–621. doi:10.1146/annurev.physiol.67.040403.102553

    PubMed  CAS  Google Scholar 

  • Dinh-Xuan AT, Higenbottam TW, Clelland CA, Pepke-Zaba J, Cremona G et al (1991) Impairment of endothelium-dependent pulmonary artery relaxation in chronic obstructive lung disease. N Engl J Med 324:1539–1547

    PubMed  CAS  Google Scholar 

  • Dirami G, Massaro GD, Clerch LB, Ryan US, Reczek PR, Massaro D (2004) Lung retinol storing cells synthesize and secrete retinoic acid, an inducer of alveolus formation. Am J Physiol Lung Cell Mol Physiol 286:249–256

    Google Scholar 

  • Dobbs LG, Mason RJ (1978) Stimulation of secretion of disaturated phosphatidylcholine from isolated alveolar type-II cells by 12-O-tetradecanoyl-13-phorbol acetate. Am Rev Respir Dis 118:705–733

    PubMed  CAS  Google Scholar 

  • Doeller JE, Isbell TS, Benavids G, Koenitzer J, Patel H et al (2005) Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal Biochem 341:40–51

    PubMed  CAS  Google Scholar 

  • Domingue DL, Koehn PL, Killen RM et al (2007) Mercury’s atmosphere: a surface-bounded exosphere. Space Sci Rev 131:161–186

    CAS  Google Scholar 

  • Donnelley DF (1995) Modulation of glomus cell membrane currents of intact rat carotid body. J Physiol 489:677–688

    Google Scholar 

  • Donoghue PCJ, Antcliffe JB (2010) Origins of multicellularity. Nature (London) 466:41–42

    CAS  Google Scholar 

  • Dorman DC, Moulin FJM, McManus BE, Mahle KC, James RA, Struve MF (2002) Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium. Toxicol Sci 65:18–25

    PubMed  CAS  Google Scholar 

  • Doyle J, Csete M (2007) Rules of engagement. Nature (London) 446:860

    CAS  Google Scholar 

  • Dreher D, Cochand L, Kok M, Kiama SG, Gehr P et al (2001) Genetic background of attenuated Salmonella typhimurium has profound influence on infection and cytokine patterns in human dendritic cells. J Leukocyte Biol 69:583–589

    PubMed  CAS  Google Scholar 

  • Drexel R, Siegmund S, Schneider HJ, Linzen B, Gielens C et al (1987) Complete amino acid sequence of a functional unit from a molluscan hemoglobin (Helix pomatia). Biochem HS 368:617–635

    CAS  Google Scholar 

  • Driedzic WR, Gesser H (1994) Energy metabolism and contractility in ectothermic vertebrate hearts: hypoxia, acidosis, and low temperature. Physiol Rev 74:221–258

    PubMed  CAS  Google Scholar 

  • Druhan LJ, Forbes SP, Pope AJ, Chen CA, Zweier JL, Cardounel AJ (2008) Regulation of eNOS-derived superoxide by endogenous methylarginines. Biocehmistry 47:7256–7263

    CAS  Google Scholar 

  • Dubach M (1981) Quantitative analysis of the respiratory system of the house sparrow, budgerigar, and violet-eared hummingbird. Respir Physiol 46:43–60

    PubMed  CAS  Google Scholar 

  • Dubois A, Brody AW, Lewis DH, Burgess F (1956) Oscillation mechanics of lungs and chest in man. J Appl Physiol 8:587–594

    PubMed  CAS  Google Scholar 

  • Dudley R (1998) Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance. J Exp Biol 201:1043–1050

    PubMed  CAS  Google Scholar 

  • Dudley R, Chai P (1996) Animal flight mechanics in physically variable gas mixtures. J Exp Biol 199:1881–1885

    PubMed  Google Scholar 

  • Dudley GA, Abraham WM, Terjung RL (1982) Influence of exercise intensity and duration on biochemical adaptations in skeletal muscles. J Appl Physiol 53:844–850

    PubMed  CAS  Google Scholar 

  • Duellman WE, Trueb L (1986) Biology of amphibians. MaGraw-Hill, New York

    Google Scholar 

  • Dulak J, Józkowicz A (2003a) Carbon monoxide – a ‘new’ gaseous modulator of gene expression. Acta Biochim Pol 50:31–47

    PubMed  CAS  Google Scholar 

  • Dulak J, Józkowicz A (2003b) Regulation of vascular endothelial growth factor synthesis by nitric oxide: facts and controversies. Antoxid Redox Signal 5:123–132

    CAS  Google Scholar 

  • Dumont DJ, Gradwohl G, Fong GH, Puri MC, Gertsenstein M et al (1994) Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8:1897–1909

    PubMed  CAS  Google Scholar 

  • Duncan FD, Bryne MJ (2002) Respiratory airflow in a wingless dung beatle. J Exp Biol 205:2489–2497

    PubMed  Google Scholar 

  • Duncan FD, Krasnov B, McMaster M (2002) Metabolic rate and respiratory gas exchange patterns in terebrionid beetles from the Negev Highlands, Israel. J Exp Biol 205:791–798

    PubMed  Google Scholar 

  • Duncker HR (1971) The lung-air sac system of birds. A contribution to the functional anatomy of the respiratory apparatus. Ergeb Anat Entwicklung 45:1–171

    Google Scholar 

  • Duncker H-R (1974) Structure of the avian respiratory tract. Respir Physiol 22:1–34

    PubMed  CAS  Google Scholar 

  • Duncker HR (1978a) Development of the avian respiratory and circulatory systems. In: Duncker HR (ed) Respiratory function in birds, adult and embryonic. Springer, Berlin, pp 260–273

    Google Scholar 

  • Duncker H-R (1978b) General morphological principles of amniotic lings. In: Piiper J (ed) Respiratory function in birds, adult and embryonic. Springer, Berlin, pp 2–15

    Google Scholar 

  • Duncker H-R (1978c) Funktionsmorphologie des Atemapparates und Coelomgliederung bei Reptilien, Völgeln und Säugern. Verh Dtsch Zool Ges 1987:99–132

    Google Scholar 

  • Duncker HR (1981) Stammesgeschichte der Struktur- und Funktionsprinzipen der Wirbeltierlungen. Verh Anat Ges 75:279–303

    PubMed  CAS  Google Scholar 

  • Duncker H-R (1989) Structural and functional integration across the reptile-bird transition: locomotor and respiratory systems. In: Wake DB, Roth G (eds) Complex organismal function: integration and evolution in vertebrates. John Wliley & Sons Ltd, New York, pp 147–169

    Google Scholar 

  • Duncker HR (2004) Vertebrate lungs: structure, topography and mechanics – a comparative perspective of the progressive integration of respiratory system, locomotor apparatus and ontogenetic development. Respir Physiol Neurobiol 144:111–124

    PubMed  Google Scholar 

  • Duncker HR, Guntert M (1985a) The quantitative design of the avian respiratory system: from hummingbird to the mute swan. In: Nachtigall W (ed) BIONA report No. 3. Gustav-Fischer, Stuttgart, pp 361–378

    Google Scholar 

  • Duncker HR, Guntert M (1985b) Morphometric analysis of the avian respiratory system. In: Duncker HR, Fleischer G (eds) Vertebrate morphology. Gustav-Fischer, Stuttgart, pp 383–387

    Google Scholar 

  • Dunel-Erb S, Laurent P (1980) Functional organization of the gill vasculature in different classes of fish. In: Lahlou B (ed) Epithelial transport in the lower vertebrates. Cambridge University Press, Cambridge, pp 37–58

    Google Scholar 

  • Dunel-Erb S, Bailly Y, Laurent P (1982) Neuroepithelial cells in fish gill primary lamellae. J Appl Physiol 53:1342–1353

    PubMed  CAS  Google Scholar 

  • Durante W (2002) Carbon monoxide and bile pigments: surprising mediators of vascular function. Vasc Med 7:195. doi:10.1191/1358863x02vm424ra

    PubMed  Google Scholar 

  • Durante W, Schafer AL (1998) Carbon monoxide and vascular cell function (review). Int J Mol Med 3:255–262

    Google Scholar 

  • Durstewitz G, Terwilliger NB (1997) cDNA cloning of a developmentally regulated hemocyanin subunit in the crustacean, Cancer magister and phylogenetic analysis of the hemocyanin gene family. Mol Biol Evol 14:266–276

    PubMed  CAS  Google Scholar 

  • Duval A (1983) Heartbeat and blood pressure in terrestrial slugs. Can J Zool 61:987–992

    Google Scholar 

  • Dyby SD (1998) Method of visualizing the tracheal system of newly hatched insects. Morphol Histo Fine Struct 91:350–352

    Google Scholar 

  • Dyer BD, Obar RA (1994) Tracing the history of the eukryotic cells. Columbia University Press, New York

    Google Scholar 

  • Dyer MF, Uglow RF (1978) Gill chamber ventilation and scaphognathite movements in Crangon crangon (L). J Exp Mar Biol Ecol 31:195–207

    Google Scholar 

  • Eastman JT (1991) Evolution and diversification of Antarctic notothenioid fishes. Am Zool 31:93–109

    Google Scholar 

  • Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:94–107

    Google Scholar 

  • Ebeling AW, Bernal P, Zuleta A (1970) Emersion of the amphibious Chilean clingfish Sicyases sanguineus. Biol Bull Mar Biol Lab (Woods Hole) 139:115–137

    Google Scholar 

  • Eblangie MC, Reedy M, Oliver T, Mishina Y, Hogan BL (2006) Evidence that autocrine signalling through BMPR-1a regulates the proliferation, survival and morphogenetic behaviour of distal lung epithelial cells. Dev Biol 291:67–82

    Google Scholar 

  • Edwards GA, Ruska H, de Harven E (1958) The fine structure of insect tracheoblasts, tracheae and tracheoles. Arch Biol 69:351–369

    CAS  Google Scholar 

  • Ege R (1916) Less known respiratory media. Vid Medd D Naturh Forening 67:14–16

    Google Scholar 

  • Egginton S, Skibeck C, Hoofd L, Calvo J, Johnston IA (2002) Peripheral oxygen transport in skeletal muscle of Antarctic and subantarctic notothenioid fish. J Exp Biol 205:769–779

    PubMed  CAS  Google Scholar 

  • El-Albani A, Bengston S, Canfield DE, Bekker A, Macchiarelli R et al (2010) Large colonial organisms with co-ordinated growth in oxygenated environments 2.1 Gyr ago. Nature (London) 466:100–104

    CAS  Google Scholar 

  • Elden HR (1968) Physical properties of collagen fibers. Int Rev Connect Tissue Res 4:283–348

    PubMed  CAS  Google Scholar 

  • Ellengren H (2005) The avian genome uncovered. Trends Ecol Evol 20:180–186

    Google Scholar 

  • Elowitz M (2010) Comment: build life to understand it. Nature (London) 468:889–890

    CAS  Google Scholar 

  • Elsey DJ, Fowkes RC, Baxter GF (2010) Regulation of cardiovascular cell function by hydrogen sulfide (H2S). Cell Biochem Funct 28:95–106

    PubMed  CAS  Google Scholar 

  • Emma MS, Yokotani TN, Sogawa K, Matsuda Y, Fujii-Kuriyama Y (1997) A novel basic helix-loophelix-PAS factor with close sequence similarity to hypoxia-inducible factor-1α regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 94:4273–4278

    Google Scholar 

  • Emsley J (2001) Oxygen. In: Emsley J (ed) Nature's building blocks: an A-Z guide to the elements. Oxford University Press, Oxford, pp 297–304

    Google Scholar 

  • Engel MS, Grimaldi DA (2004) New light shed on the oldest insect. Nature (London) 427:627–630

    CAS  Google Scholar 

  • Engelhard EK, Kam-Morgan LNW, Washburn JO, Volkman LE (1994) The insect tracheal system: a conduit for the systemic spread of Autographa californica M nuclear polyhedrosis virus. Proc Natl Acad Sci USA 91:3224–3227

    PubMed  CAS  Google Scholar 

  • Engstrom P, Easterling L, Baker R, Matalon S (1990) Mechanisms of extracellular hydrogen peroxide clearance by alveolar type-II pneumocytes. J Appl Physiol 69:2078–2084

    PubMed  CAS  Google Scholar 

  • Enns T, Scholander PF, Bradstreet ED (1965) Effect of hydrostatic pressure on gases dissolved in water. J Phys Chem 69:389–391

    PubMed  CAS  Google Scholar 

  • Epting RJ (1980) Functional dependence of the power for hovering on wing disc loading in hummingbirds. Physiol Zool 53:347–357

    Google Scholar 

  • Erwin DH (1993) The great Paleozoic crisis: life and death in the Permian. Columbia University Press, New York

    Google Scholar 

  • Erwing JF, Maines MD (1993) Glutathione depletion induces heme oxygenase-1 (HSP32) mRNA and protein in rat brain. J Neurochem 60:1512–1519

    Google Scholar 

  • Esteban GF, Finlay BJ, Clarke KJ (2009) Sequestered organelles sustain aerobic microbial life in anoxic environments. Environ Microbiol 11:544–550

    PubMed  Google Scholar 

  • Ettwig JF, Butler MK, Paslier DL, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature (London) 464:543–548

    CAS  Google Scholar 

  • Euler VUS, Liljestrand G (1946) Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand 12:301–320

    Google Scholar 

  • Evans DH, Piermarini PM, Choe K (2005) The multifunctional fish gill: dominanat site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177

    PubMed  CAS  Google Scholar 

  • Everson I, Ralph R (1968) Blood analyses of some Antarctic fish. Br Antarct Surv Bull 15:59–62

    Google Scholar 

  • Faber JJ, Rahn H (1970) Gas exchange between air and water and the ventilation pattern of the electric eel. Respir Physiol 9:151–161

    Google Scholar 

  • Fagerland JA, Arp LH (1990) A morphologic study of bronchus-associated lymphoid tissue in turkeys. Am J Anat 189:4–34

    Google Scholar 

  • Fagerland JA, Arp LH (1993) Distribution and quantitation of plasma cells, T lymphocyte subsets, and B lymphocytes in bronchus-associated lymphoid tissue of chickens: age-related differences. Reg Immunol 5:28–36

    PubMed  CAS  Google Scholar 

  • Fairbridge RW (1966) The encyclopedia of oceanography. Rheinhold, New York

    Google Scholar 

  • Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D et al (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291–296

    PubMed  CAS  Google Scholar 

  • Fanelli GM, Goldstein L (1964) Ammonia excretion in the neotenous newt Necturus maculosus (Raf). Comp Biochem Physiol 13:193–204

    PubMed  CAS  Google Scholar 

  • Fang LP, Lin Q, Tang CS, Liu XM (2009) Hydrogen sulfide suppresses migration, ploriferation and myoblast transdifferentiation of human fibroblasts. Pulm Pharmacol Ther 6:554–561

    Google Scholar 

  • Fänge R (1976) Gas exchange in the swim bladder. In: Hughes GM (ed) Respiration in amphibious vertebrates. Academic, London, pp 189–211

    Google Scholar 

  • Faraci MF (1990) Cerebral circulation during hypoxia: is a bird brain better? In: Sutton JR, Coates G, Remmers JE (eds) Hypoxia: the adaptations. BC Decker, Burlington, ON, pp 26–29

    Google Scholar 

  • Faraci MF, Fedde MR (1986) Regional circulatory responses to hypocapnia and hypercapnia in bar-headed geese. Am J Physiol 250:R499–R504

    PubMed  CAS  Google Scholar 

  • Faraci MF, Kilgore DL, Fedde MR (1984) Oxygen delivery to the heart and brain during hypoxia: pekin duck vs bar-headed geese. Am J Physiol 247:R68–R75

    Google Scholar 

  • Farhi L (1964) Gas stores of the body. In: Fenn WO, Rahn H (eds) Handbook of physiology, section 3: respiration, vol I. American Physiological Society, Washington, DC, pp 873–924

    Google Scholar 

  • Farhi L, Rahn H (1955) Gas stores of the body and the steady state. J Appl Physiol 7:472–484

    PubMed  CAS  Google Scholar 

  • Fariday EE, Naimark A (1971) Effect of distension on metabolism of excised dog lung. J Appl Physiol 31:31–37

    Google Scholar 

  • Farley J (1977) The spontaneous generation controversy from Descartes to Oparin. John Hopkins University, Baltimore, MA

    Google Scholar 

  • Farley RD (1990) Regulation of air and blood flow through the booklungs of the desert scorpion, Paruroctonus mesaensis. Tissue Cell 22:547–569

    PubMed  CAS  Google Scholar 

  • Farmer CG (1999) Evolution of the vertebrate cardio-pulmonary system. Annu Rev Physiol 61:573–592

    PubMed  CAS  Google Scholar 

  • Farmer CG (2006) On the origin of avian air sacs. Respir Physiol Neurobiol 154:89–106

    PubMed  CAS  Google Scholar 

  • Farmer CG, Sanders K (2010) Unidirectional airflow in the lungs of alligators. Science 327:338–340

    PubMed  CAS  Google Scholar 

  • Farrell AP (1991) Circulation of body fluids. In: Prosser CL (ed) Environmental and metabolic animal physiology. Wiley, New York, pp 509–558

    Google Scholar 

  • Farrell AP (1993) Cardiovascular system. In: Evans DH (ed) The physiology of fishes. CRC Press, Boca Raton, FL, pp 219–250

    Google Scholar 

  • Farrell AP, Jones DR (1992) The heart. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish physiology: cardiovascular systems, vol 12. Academic, New York, pp 1–87

    Google Scholar 

  • Farrell AP, Randall DJ (1978) Air breathing mechanisms in two Amazonian teleosts, Arapaima gigas and Hoplerythrinus unitaeniatus. Can J Zool 56:939–945

    Google Scholar 

  • Farrell AP, Daxboeck C, Randall DJ (1979) The effect of input pressure and flow on the pattern and resistance to flow in isolated perfused gills. J Comp Physiol 133:233–248

    Google Scholar 

  • Farrell AP, Sobin SS, Randall DJ, Crosby S (1980) Sheet blood flow in the secondary lamellae of teleost gills. Am J Physiol 239:R428–R441

    PubMed  CAS  Google Scholar 

  • Farrelly CA, Greenaway P (1992) Morphology and ultrastructure of the gills of terrestrial crabs (Crustacea, Gecarcinidae and Grapsidae): adaptations for air-breathing. Zoomorphology 112:39–49

    Google Scholar 

  • Fay P (1965) Heterotrophy and nitrogen fixation in Chlorogloea fritschii. J Gen Microbiol 39:11–20

    PubMed  CAS  Google Scholar 

  • Fedde MR (1980) The structure and gas flow pattern in the avian lung. Poult Sci 59:2642–2653

    PubMed  CAS  Google Scholar 

  • Fedde MR (1986) Respiration. In: Sturlie PD (ed) Avian physiology, 3rd edn. Springer, New York, pp 191–220

    Google Scholar 

  • Fedde MR (1998) Relationship of structure and function of the avian respiratory system to disease susceptibility. Poult Sci 77:1130–1138

    PubMed  CAS  Google Scholar 

  • Fedde MR, Orr JA, Shams H, Scheid P (1989) Cardiopulmonary function in exercising bar-headed geese during normoxia and hypoxia. Respir Physiol 77:239–262

    PubMed  CAS  Google Scholar 

  • Feder ME (1976) Lungless, body size, and metabolic rate in salamanders. Physiol Zool 49:398–418

    Google Scholar 

  • Fehrenbach H (2001) Alveolar epithelial type II cell: defender of the alveolus revisted. Respir Res 2:33–46

    PubMed  CAS  Google Scholar 

  • Felbeck H (1983) Sulfide oxidation and carbon fixation by the gutless clam Solemya reidi: an animal-bacteria symbiosis. J Comp Physiol 152:3–11

    CAS  Google Scholar 

  • Felbeck H, Childress JJ, Somero GN (1981) Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature (London) 293:291–293

    CAS  Google Scholar 

  • Feller G, Gerday C (1987) Metabolic pattern of the heart of a hemoglobin-free Antarctic fish Channichyths rhinoceratus. Polar Biol 7:225–229

    CAS  Google Scholar 

  • Fenchel T, Finlay BJ (1994) The evolution of life without oxygen. Am Naturlist 82:22–29

    Google Scholar 

  • Fenchel T, Finlay BJ (2008) Oxygen and the spatial structure of microbial communities. Biol Rev 83:553–569

    PubMed  Google Scholar 

  • Fenchel T, Riedl RJ (1970) The sulfide system: a new biotic community underneath the oxidised layer of marine sand bottoms. Mar Biol 7:255–268

    CAS  Google Scholar 

  • Ferguson JS, Martin JL, Azad AK, McCarthy TR, Kang PB et al (2006) Surfactant protein D increases fusion of Mycobacterium tuberculosis - containing phagosomes and lysosomes in human macrophages. Infect Immun 74:7005–7009

    PubMed  CAS  Google Scholar 

  • Fernandes MN, Rantin FT, Kalinin AL, Moron SE (1994) Comparative study of gill dimensions in three erythrinid species in relation to their respiratory function. Can J Zool 72:160–165

    Google Scholar 

  • Ferrara N (1999) Molecular and biological properties of vascular endothelial growth factor. J Mol Med 77:527–543

    PubMed  CAS  Google Scholar 

  • Ferrara N (2000) Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res 55:15–35

    PubMed  CAS  Google Scholar 

  • Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25

    PubMed  CAS  Google Scholar 

  • Ferrara N, Houck K, Jakeman L, Leung DW (1992) Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 13:18–32

    PubMed  CAS  Google Scholar 

  • Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature (London) 380:439–442

    CAS  Google Scholar 

  • Field S, Kelly SM, Macklem PT (1982) The oxygen cost of breathing in patients with cardiorespiratory disease. Am Rev Respir Dis 126:9–13

    PubMed  CAS  Google Scholar 

  • Fike DA, Grotzinger JP, Pratt LM, Summons RE (2006) Oxidation of the Ediacaran Ocean. Nature (London) 444:744–747

    CAS  Google Scholar 

  • Fincke T, Paul R (1989) Booklung function in arachnids. III. The function and control of the spiracles. J Comp Physiol 159B:433–441

    Google Scholar 

  • Fine A (2009) Breathing life into the lung stem cell field. Cell Stem Cell 4:468–469

    PubMed  CAS  Google Scholar 

  • Finkel T (1998) Oxygen radicals and signaling. Curr Opin Cell Biol 10:248–253

    PubMed  CAS  Google Scholar 

  • Finkel T (2005) Radical medicine: treating ageing to cure disease. Neture Rev Mol Cell Biol 6:971–976

    CAS  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature (London) 48:239–247

    Google Scholar 

  • Finlay WH (2001) The mechanics of pharmaceutical aerosols: an introduction. Academic, London

    Google Scholar 

  • Finlay WH, Esteban GF (2009) Oxygen sensing drives predictable migrations in a microbial community. Environ Microbiol 11:81–85

    PubMed  Google Scholar 

  • Finney BA, Del Moral PM, Wilkinson WJ, Cayzac S, Cole M et al (2008) Regulation of mouse lung development by extracellular calcium-sensing receptor. Can J Physiol 586:6007–6019

    CAS  Google Scholar 

  • Fiorucci S, Distrutti E, Cirino G, Wallace JL (2006) The merging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroentrology 131:259–271

    CAS  Google Scholar 

  • Fischer AG (1965) Fossils, early life, and atmospheric history. NAS Symposium 53:1205–1214

    Google Scholar 

  • Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev Aquatic Sci 2:399–436

    CAS  Google Scholar 

  • Fisher R, Shaffer H (1994) The decline of amphibians in California’s central valley. Conserv Biol 10:1387–1397

    Google Scholar 

  • Flamme I, Frohlich T, von Reutern M, Kappel A, Damert A, Risau W (1997) HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1α and developmentally expressed in blood vessels. Mech Dev 63:51–60

    PubMed  CAS  Google Scholar 

  • Foelix RF (1982) Biology of spiders. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Fong GH, Rossant J, Gertsenstein M, Breitman BL (1995) Role of the flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature (London) 376:66–70

    CAS  Google Scholar 

  • Fons R, Sicart R (1976) Contribution à la connaissance du métabolisme énergétique chez deux Crocidurinae: Suncus etruscus (Savi 1822) et Crocidura russula (Herman 1780), Insectivora, Soricidae, Mammalia. Mammalia 40:229–311

    Google Scholar 

  • Foot NJ, Orgeig S, Daniels CB (2006) The evolution of a physiological system: the pulmonary surfactant system in diving mammals. Respir Physiol Neurobiol 154:118–138

    PubMed  CAS  Google Scholar 

  • Forey P, Janvier P (1994) Evolution of the early vertebrates. Am Sci 82:554–565

    Google Scholar 

  • Forman GL (1972) Comparative morphological and histochemical studies of stomach of selected American bats. Univ Kansas Sci Bull 49:591–729

    Google Scholar 

  • Förstermann U, Boissel JP, Kleinert H (1998) Expression control of the “constitutive” isoforms of nitric oxide synthetase (iNOS) and eNOS. FASEB J 12:773–790

    PubMed  Google Scholar 

  • Fox HM (1921) Methods of studying the respiratory exchange in small aquatic organisms with particular reference to the use of flagellates as an indicator for oxygen consumption. J Gen Physiol 3:565–573

    PubMed  CAS  Google Scholar 

  • Fox HM (1955) The effect of oxygen on the concentration of haem in invertebrates. Proc R Soc Lond B Biol Sci B143:203–214

    Google Scholar 

  • Fox H, Simmonds BG, Washbourn R (1935) Metabolic rates of ephemerid nymphs from swiftly flowing and from still waters. J Exp Biol 12:179–184

    Google Scholar 

  • Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J et al (1980) The phylogeny of procaryocytes. Science 209:457–463

    PubMed  CAS  Google Scholar 

  • Foxon GEH (1964) Blood and respiration. In: Moore JA (ed) Physiology of amphibia. Academic, New York, pp 151–209

    Google Scholar 

  • Fraenkel G (1932) Der Atmungsmechanismus des Skorpions. Z Vergl Physiol 11:656–661

    Google Scholar 

  • Fraenkel G, Herford GVB (1938) The respiration of insects through the skin. J Exp Biol 15:266–280

    CAS  Google Scholar 

  • Franck S, von Bloh W, Bounama C, Steffen M, Schonberner D, Schellnhuber HJ (2001) Limits of photosynthesis in extrasolar planetary systems for Earth-like planets. Adv Space Res 28:695–700

    PubMed  CAS  Google Scholar 

  • Frank L (1991) Developmental aspects of experimental pulmonary oxygen toxicity. Free Radic Biol Med 11:463–494

    PubMed  CAS  Google Scholar 

  • Frazzetta TH (1975) Complex adaptations in evolving populations. Sinaeur, Sunderland, MA

    Google Scholar 

  • Freadman MA (1981) Swimming energetics of striped bass (Morone saxatilis) and bluefish (Pomatomus saltatrix): hydrodynamic correlates of locomotion and gill ventilation. J Exp Biol 90:253–265

    Google Scholar 

  • Frederiq L (1878) Recherches sur la physiologie de poulpe commun. Arch zool exp et gen 7:535–583

    Google Scholar 

  • Freedman A, Sevel D (1966) The cerebro-retinal effects of carbon dioxide poisoning. Arch Ophthal 76:59–65

    PubMed  CAS  Google Scholar 

  • Freedman LS, Samuels I, Fish SA, Schwartz B, Lange M, Morgano L (1980) Sparing of the brain in neonatal undernutrition: amino acid transport and incorporation into brain and muscle. Science 207:902–904

    PubMed  CAS  Google Scholar 

  • Frei R, Gaucher C, Poulton SW, Canfield DE (2009) Fluctuations in PreCambrian atmospheric oxygenation recorded by chromium isotopes. Nature (London) 461:250–254

    CAS  Google Scholar 

  • Freitas TAK, Hou S, Dioum EM, Saito JA, Newhouse J et al (2004) Abcestral hemoglobins in Archea. Proc Natl Acad Sci USA 101:6675–6680

    PubMed  CAS  Google Scholar 

  • Freites JA, Choi Y, Tobias DJ (2003) Molecular dynamics simulations of a pulmonary surfactant protein B peptide in a lipid monolayer. Biophys J 84:2169–2180

    PubMed  CAS  Google Scholar 

  • French MJ (1988) Invention and evolution design in nature and engineering. Cambridge University Press, Cambridge

    Google Scholar 

  • Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880

    PubMed  CAS  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Ann Rev Biochem 54:97–112

    Google Scholar 

  • Fridovich I (1998) Oxygen toxicity: a radical explanation. J Exp Biol 201:1203–1209

    PubMed  CAS  Google Scholar 

  • Fritsche R, Nilsson S (1993) Cadiovascular and ventilatory control during hypoxia. In: Rankin JC, Jensen FB (eds) Fish ecophysiology. Chapman and Hall, London, pp 180–206

    Google Scholar 

  • Fritts HW (1961) Oxygen consumption of tissues in the human lung. Science 133:1070–1072

    PubMed  CAS  Google Scholar 

  • Fritts HW, FillerJ FAP, Cournand A (1959) The efficiency of ventilation during voluntary hyperpnea; studies in normal subjects and in dyspenic patients with either chronic pulmonary emphysema or obesity. J Clin Invest 38:1339–1348

    PubMed  Google Scholar 

  • Fu YM, Spirito P, Yu ZX, Biro S, Sasse J et al (1991) Acidic fibroblast growth factor in the developing rat embryo. J Cell Biol 114:1261–1273

    PubMed  CAS  Google Scholar 

  • Fu XW, Wang D, Nurse CA, Dinauer MC, Cutz E (2000) NADPH oxidase is an O2 sensor in airway chemoreceptors: evidence from K+ current modulation in wild-type and oxidase-deficient mice. Proc Natl Acad Sci USA 97:4374–4379

    PubMed  CAS  Google Scholar 

  • Fu XW, Nurse CA, Wong V, Cutz E (2002) Hypoxia-induced secretion of serotonin from intact pulmonary neuroepithelial bodies in neonatal rabbit. J Physiol 539:503–510

    PubMed  CAS  Google Scholar 

  • Fujita T, Toda K, Karimova A, Yan SF, Naka Y et al (2001) Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med 7:598–604

    PubMed  CAS  Google Scholar 

  • Fujiwara T, Adams FH, Nozaki M, Dermer GB (1970) Pulmonary surfactant phospholipids from turkey lung: comparison with rabbit lung. Am J Physiol 218:218–225

    PubMed  CAS  Google Scholar 

  • Fukuda R, Zhang HF, Kim JW, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129:111–122

    PubMed  CAS  Google Scholar 

  • Furchgott RF, Zawadki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetycholine. Nature (London) 288:373–376

    CAS  Google Scholar 

  • Gadalla MM, Snyder SH (2010) Hydrogen sulfide as a gasotransmitter. J Neurochem 113:14–26

    PubMed  CAS  Google Scholar 

  • Galkin SV (2010) Structure and geography of hydrothermal communities in the global ocean. Zh Obshch Biol 71:205–218

    PubMed  CAS  Google Scholar 

  • Gallanger BC (1986) Branching morphogenesis in the avian lung: electron microscopic studies using cataionic dyes. J Embryol Exp Morphol 94:189–205

    Google Scholar 

  • Gamaley IA, Klybin IV (1999) Roles of ROS: signaling and regulation of cellular functions. Int Rev Cytol 188:203–255

    PubMed  CAS  Google Scholar 

  • Gans C (1988) Adaptation and form and function relation. Am Zool 28:681–697

    Google Scholar 

  • Garland T, Huey RB (1987) Testing symmorphosis: does structure match functional requirements? Evolution 41:1404–1409

    Google Scholar 

  • Garland T, Else PL, Hulbert AJ, Tap P (1987) Effects of endurance training on activity metabolism of lizards. Am J Physiol 21:R450–R456

    Google Scholar 

  • Garofalo P, Pellegrino D, Amelio D, Tota B (2009) The Antarctic hemoglobinless ice-fish, fifty five years layer: a unique cardiocirculatory interplay of disaptation and phenotypic plasticity. Comp Biochem Physiol A Mol Integr Physiol 154:10–28

    PubMed  CAS  Google Scholar 

  • Garrels RM, Mackenzie FT (1971) Evolution of sedimentary rocks. Norton, New York

    Google Scholar 

  • Gary WF, Rahn H (1970) Normal arterial gas tensions and pH and the breathing frequency of the electric eel. Respir Physiol 9:141–150

    Google Scholar 

  • Gast RJ, Morgan DM, Dennet MR, Caron DA (2007) Kleptoplasty in an Antarctic dinoflagellate: caught in transition? Environ Microbiol 9:39–45

    PubMed  CAS  Google Scholar 

  • Gaston B, Drazen JM, Loscalzo J, Stamler JS (1994) The biology of nitrogen oxides in the airways. Am J Respir Crit Care Med 149:538–551

    PubMed  CAS  Google Scholar 

  • Gaston B, Stamler J (1999) Nitric oxide and infection. Plenum, New York

    Google Scholar 

  • Gatz RN, Crawford EC, Piiper J (1974) Respiratory properties of the blood of lungless and gill-less salamander, Desmognathus fuscus. Respir Physiol 20:33–41

    PubMed  CAS  Google Scholar 

  • Gatz RN, Glass ML, Wood SC (1987) Pulmonary function of the green-turtle, Chelonia mydas. J Appl Physiol 62:459–463

    PubMed  CAS  Google Scholar 

  • Gee JH, Waldick RC (1995) Ontogenetic buoyancy changes and hydrostatic control in larval anurans. Copeia 1995:861–870

    Google Scholar 

  • Gehr P, Bachofen M, Weibel ER (1978) The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol 32:121–140

    PubMed  CAS  Google Scholar 

  • Gehr P, Sehovic S, Burri PH, Classen H, Weibel ER (1980) The lung of shrews: morphometric estimation of diffusion capacity. Respir Physiol 44:61–86

    Google Scholar 

  • Gehr P, Mwangi DK, Amman A, Maloiy GMO, Taylor CR, Weibel ER (1981) Design of the mammalian respiratory system: V. Scaling morphometric diffusing capacity to body mass: wild and domesic animals. Respir Physiol 44:61–86

    PubMed  CAS  Google Scholar 

  • Gehr P, Schürch S, Berthiaume Y, Hof IV, Geiser M (1990) Particle retention in airways by surfactant. J Aerosol Med 3:27–43

    Google Scholar 

  • Geiser M, Baumann M, Cruz-Orive LM, Hof IV, Gehr P (1990) Assessment of particle retention and clearance in the intrapulmonary conducting airways of hamster lungs with the fractionator. J Microsc 160:75–88

    PubMed  CAS  Google Scholar 

  • Geiser M, Rothen-Rutishauser BM, Kapp N, Schürch S, Kreyling W et al (2003) Ultrafine particles cross cellular membranes by non-phagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113:1555–1560

    Google Scholar 

  • Geng B, Yan H, Zhong GZ, Zhang CY, Chen XB et al (2004) Hydrogen sulfide: a novel cardiovascular regulatory gas factor. Beijing Da Xue Xue Bao 36:106

    PubMed  Google Scholar 

  • Genthon G, Barnola JM, Raynaud D, Lorius C, Jouzel J et al (1987) Vostok ice core: climatic response to CO2 and orbital forcing changes over the last climatic cycle. Nature (London) 329:414–418

    CAS  Google Scholar 

  • George JC, Shah RV (1956) Comparative morphology of the lung of snakes with remarks on the evolution of the lung in reptiles. J Anim Morphol Physiol 3:1–7

    Google Scholar 

  • George JC, Shah RV (1965) Evolution of air sacs in Sauropodia. J Anim Morphol Physiol 12:255–263

    Google Scholar 

  • George CLS, Goss KL, Meyerholz DK, Lamb FS, Synder JM (2008) Surfactant-associated protein A provides critical immunoprotection in neonatal mice. Infect Immun 76:380–390

    PubMed  CAS  Google Scholar 

  • Gerald D, Berra E, Frapat YM, Chan DA, Giaccia AJ et al (2004) JunD reduces tumour angiogenesis by protecting cells from oxidative stress. Cell 118:781–794

    PubMed  CAS  Google Scholar 

  • Gerhardt H (2008) VEGF and endothelial guidance in angiogenic sprouting. Organogenesis 4:241–246

    PubMed  Google Scholar 

  • Gerhardt H, Betsholtz C (2005) How do endothelia cells orientate? EXS 94:3–15

    PubMed  Google Scholar 

  • Gerritsen ME, Soriano R, Yang S, Zlot C, Ingle G et al (2003) Branching out: a molecular fingerprint of endothelial differentiation into tube-like structures generated by affymetrix oligonucleotide arrays. Microcirculation 10:63–81

    PubMed  CAS  Google Scholar 

  • Gess B, Schricker K, Pfeifer M, Kurtz A (1997) Acute hypoxia upregulates NOS gene expression in rats. Am J Physiol Regul Integr Comp Physiol 273:R905–R910

    CAS  Google Scholar 

  • Ghabrial AS, Krasnow MA (2006) Social interactions among epithelial cells during tracheal branching morphogenesis. Nature (London) 441:746–749

    CAS  Google Scholar 

  • Ghabrial A, Luschnig S, Metzstein MM, Krasnov MA (2003) Branching morphogenesis of the Drosophila and tracheal system. Annu Rev Cell Dev Biol 19:623–647

    PubMed  CAS  Google Scholar 

  • Gheorghiu S, Kjelstrup S, Pfeifer P, Coppens MO (2005) Is the lung an optimal gas exchanger? In: Losa GA, Merlini D, Nonnenmacher TF, Weibel ER (eds) Fractal in biology and medicine, vol IV. Birkhäuser, Basel, pp 31–42

    Google Scholar 

  • Ghiretti F (1966) Respiration. In: Wilbur KM, Yonge CM (eds) Physiology of mollusca. Academic, London, pp 175–298

    Google Scholar 

  • Gibe J (1970) Láppareil respiratoire. In: Grasse PP (ed) Traité de zoologie, tome XIV, fascicule III. Masson, Paris, pp 499–520

    Google Scholar 

  • Gibson JS, Cossins AR, Ellory JC (2000) Oxygen-sensitive membrane transporters in vertebrate red cells. J Exp Biol 203:1395–1407

    PubMed  CAS  Google Scholar 

  • Gibson D, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H et al (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319:1215–1220

    PubMed  CAS  Google Scholar 

  • Gil J, Weibel ER (1971) Extracellular lining of bronchioles after perfusion-fixation of rat lungs for electron microscopy. Anat Rec 169:131–145

    Google Scholar 

  • Gil H-W, Oh M-H, Woo K-M, Lee E-Y, Oh M-H, Hong S-Y (2007) Relationship between pulmonary surfactant protein and lipid peroxidation in lung injury due to paraquat intoxication in rats. Korean J Intern Med 22:67–72

    PubMed  CAS  Google Scholar 

  • Gilchrist BM (1954) Hemoglobin in Artemia. Proc R Soc Lond B Biol Sci B143:136–146

    Google Scholar 

  • Gill BC, Lyons TW, Young SA, Kump LR, Knoll AH, Saltzman MR (2011) Geoochemical evidence for widespread euxinia in the Later Cambrian Ocean. Nature (London) 469:80–83

    Google Scholar 

  • Gillen RC, Riggs A (1973) Structure and function of the isolated hemoglobins of the American eel, Anguilla rostrata. J Biochem 248:1961–1969

    CAS  Google Scholar 

  • Gillespie MN, Pastukh VM, Ruchko MV (2010) Controlled DNA ‘damage’ and repair in hypoxic signaling. Respir Physiol Neurobiol 174:244–251

    PubMed  CAS  Google Scholar 

  • Gilmour KM (2001) The CO2/pH ventilatory drive in fish. Comp Biochem Physiol A Physiol 130:219–240

    CAS  Google Scholar 

  • Glass ML, Johansen K (1981) Pulmonary diffusing capacity in reptiles: relations to temperature and O2-uptake. J Comp Physiol 142:09–514

    Google Scholar 

  • Glass ML, Wood SC (1983) Gas exchange and control of breathing in reptiles. Physiol Rev 63:232–260

    PubMed  CAS  Google Scholar 

  • Glass ML, Wood SC, Hoyt RW, Johansen K (1979) Chemical control of breathing in the lizard Varanus exanthematicus. Comp Biochem Physiol A62:999–1003

    Google Scholar 

  • Glasser S, Korfhagen TR, Weaver T, Pilot-Matias T, Fox JL, Whitsett JA (1987) cDNA and deduced amino acid sequence of human pulmonary surfactant-associated proteolipid SPL (Phe). Proc Natl Acad Sci USA 84:4007–4011

    PubMed  CAS  Google Scholar 

  • Glasser S, Korfhagen TR, Bruno MD, Dey C, Whitsett JA (1990) Structure and expression of the pulmonary surfactant protein SP-C gene in the mouse. J Biol Chem 265:21986–21991

    PubMed  CAS  Google Scholar 

  • Glasser S, Detmer EA, Ikegami M, Na CL, Stahalman MT, Whitsett JA (2003) Pneumonitis and emphysema in SP-C gene targeted mice. J Biol Chem 278:14291–14298

    PubMed  CAS  Google Scholar 

  • Glazer L, Shilo BZ (1991) The Drosophila FGF-R homolog is expressed in the embryonic tracheal system and appears to be required for directed tracheal cell extension. Genes Dev 5:697–705

    PubMed  CAS  Google Scholar 

  • Gleeson TT (1979) The effects of training and captivity on the metabolic capacity of the lizard, Sceloporus occidentalis. J Comp Physiol 129:123–128

    CAS  Google Scholar 

  • Gloire G, Legland-Poels S, Piette J (2006) NF-B activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505

    PubMed  CAS  Google Scholar 

  • Gnarra JR, Ward JM, Porter FD, Wagner JR, Devor DE et al (1997) Defective placental vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc Natl Acad Sci USA 94:9102–9107

    PubMed  CAS  Google Scholar 

  • Gödecke A, Molojavyi A, Heger J, Flögel U, Ding Z et al (2003) Myoglobin protects the heart from inducible nitric-oxide synthetase (iNOS)-mediated nitrosactive stress. J Biol Chem 278:21761–21766

    PubMed  Google Scholar 

  • Godfrey RW (1997) Human airway epithelial tight junctions. Microsc Res Tech 38:488–499

    PubMed  CAS  Google Scholar 

  • Goldberger AL (1991) Is the normal heart beat chaotic or homeostatic? News Physiol Sci 6:87–91

    PubMed  CAS  Google Scholar 

  • Goldberger AL, Rigney DR, West BJ (1990) Chaos and fractal in human physiology. Sci Am 262:34–41

    Google Scholar 

  • Goldin GV, Opperman LA (1980) Induction of supernumerary tracheal buds and the stimulation of DNA synthesis in the embryonic chick lung and trachea by epidermal growth factor. J Embryol Exp Morphol 60:235–243

    PubMed  CAS  Google Scholar 

  • Golpon HA, Geraci MW, Miller HL, Miller GJ, Tuder RM, Voelkel NF (2001) HOX genes in human lungs: altered expression in primary pulmonary hypertension and emphysema. Am J Pathol 158:955–966

    PubMed  CAS  Google Scholar 

  • Gomi T (1982) Electron microscopic studies of the alveolar brush cell of the striped snake (Elaphe quadrivirgata). J Med Soc Toho Univ 29:481–489

    Google Scholar 

  • Gonçalves CA, Figueiredo MH, Bairos VA (1995) Three dimensional organization of the elastic fibers in the rat lung. Anat Rec 243:63–70

    PubMed  Google Scholar 

  • Goniakowska-Witalinska L (1978) Ultrastructure and morphometric study of the lung of the European salamander, Salamandra salamandra L. Cell Tissue Res 191:343–356

    PubMed  CAS  Google Scholar 

  • Goniakowska-Witalinska L (1980a) Ultrastructural and morphometric changes in the lung of the newt, Triturus cristatus carnifex Laur during ontogeny. J Anat 130:571–583

    PubMed  CAS  Google Scholar 

  • Goniakowska-Witalinska L (1980b) Scanning and transmission electron microscopic study of the lung of the newt, Triturus alpestris Laur. Cell Tissue Res 205:133–145

    PubMed  CAS  Google Scholar 

  • Goniakowska-Witalinska L (1982) Develoment of the larval lung of Salamandra salamandra L. Anat Embryol 164:113–137

    PubMed  CAS  Google Scholar 

  • Goniakowska-Witalinska L (1986) Lung of the tree frog, Hyla arborea: a scanning and transmission electron microscope study. Anat Embryol 174:379–389

    PubMed  CAS  Google Scholar 

  • Goniakowska-Witalinska L (1995) The histology and ultrastructure of the amphibian lung. In: Pastor L (ed) Histology, ultrastructure and immunohistochemistry of the respiratory organs in non-mammalian vertebrates. Publiciones Universidad de Murcia 1995, Murcia, Spain, pp 72–112

    Google Scholar 

  • Goniakowska-Witalinska L, Lauweryns JM, van Ranst L (1990) Neuroepithelial bodies in the lung of Bombina orientalis. In: Acker H et al (eds) Chemoreceptors and chemoreceptor reflexes. Plenum, New York, pp 111–117

    Google Scholar 

  • Goniakowska-Witaliñska L, Zaccone G, Fasulo S (1993) Immunocytochemistry and ultrastructure of the solitary neuroepithelial cells in the gills of the neotenic tiger salamander Ambystoma tigrum (Urodela, Amphibia). Eur Arch Biol 104:45–50

    Google Scholar 

  • González AM, Buscaglia M, Ong M, Baird A (1990) Distribution of fibroblast growth factor in the 18-day rat fetus: localization in the basement laminas of diverse tissues. J Cell Biol 110:753–765

    PubMed  Google Scholar 

  • González C, Almaraz L, Obeso A, Rigual R (1994) Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev 74:829–898

    PubMed  Google Scholar 

  • González AM, Hill DJ, Logan A, Maher PA, Baird A (1996) Distribution of fibroblast growth factor (FGF-2) and FGF receptor-1 messanger RNA expression and protein presence in the mid-trimester human fetus. Pediatr Res 39:375–385

    PubMed  Google Scholar 

  • Goodrich ES (1930) Studies on the structure and development of vertebrates. MacMillan, London

    Google Scholar 

  • Gordon M, Bartholomew GA, Grinnel D, Jørgensen B, White FN (1977) Animal physiology: principles and adaptation. Macmillan, New York

    Google Scholar 

  • Gorr TA, Gassmann M, Wappner P (2006) Sensing and responding to hypoxia via HIF in model invertebrates. J Insect Physiol 52:349–364

    PubMed  CAS  Google Scholar 

  • Gosline JM (1976) The physical properties of elastic tissue. Int Rev Connet Tissue Res 7:211–249

    CAS  Google Scholar 

  • Gosline JM, French CJ (1979) Dynamic mechanical properties of elastin. Biopolymers 18:2091–2103

    PubMed  CAS  Google Scholar 

  • Gosline JM, Steeves JD, Harman AD, deMont ME (1983) Patterns of circular and radial muscle activity in respiration and jetting of the squid Loligo opalescens. J Exp Biol 104:97–109

    Google Scholar 

  • Gospodarowicz D (1991) Biological activities of fibroblast growth factors. In: Baird A, Klagsbrun M (eds) The fibroblast growth factor family. New York Academy of Science, New York, pp 1–8

    Google Scholar 

  • Goss GG, Perry SF, Fryer JN, Laurent P (1998) Gill morphology and acid-base regulation in freshwater fishes. Comp Biochem Physiol A Mol Integr Physiol 119:107–115

    PubMed  CAS  Google Scholar 

  • Gracey AY, Troll JV, Somero GN (2001) Hypoxia induced gene expression profiling in the euroxic fish Gillichthys mirabilis. Proc Ntl Acad Sci USA 98:1993–1998

    CAS  Google Scholar 

  • Graham JB (1973) Terrestrial life of the amphibious fish Mnierpes macrocephalus. Mar Biol XXX:83–91

    Google Scholar 

  • Graham JB (1990) Ecological, evolutionary, and physical factors influencing aquatic animal respiration. Am Zool 30:137–146

    Google Scholar 

  • Graham JB (1994) An evolutionary perspective for bimodal respiration: a biological synthesis of fish air breathing. Am Zool 34:229–237

    Google Scholar 

  • Graham JB (1997) Air breathing fishes: evolution, diversity and adaptation. Academic, San Diego, CA

    Google Scholar 

  • Graham JB, Lee HJ (2004) Breathing air in air: in what ways might extant amphibious fish biology relate to prevailing concepts about early tetrapods, the evolution of vertebrate air breathing, and the vertebrate land transition? Physiol Biochem Zool 77:720–731

    PubMed  Google Scholar 

  • Graham JB, Gee JH, Robinson FS (1975) Hydrostatic and gas exchange functions of the lung of the sea snake, Pelamis platurus. Comp Biochem Physiol 50:477–482

    Google Scholar 

  • Graham JB, Kramer DL, Pineda E (1977) Respiration of the air-breathing fish Piabucina festae. J Comp Physiol 122B:295–310

    Google Scholar 

  • Graham JB, Rosenblatt RH, Gans C (1978) Vertebrate air breathing arose in fresh waters and not in the ocean. Evolution 32:459–463

    Google Scholar 

  • Graham JB, Baird TA, Stockmann W (1987) The transition to air-breathing in fishes. IV. Impact of branchial specializations for air-breathing on the aquatic respiratory mechanisms and ventilatory costs of the swamp eel Synbranchus marmoratus. J Exp Biol 129:83–106

    Google Scholar 

  • Graham JB, Dudley R, Agullar NM, Gans C (1995) Implications of the late Paleozoic oxygen pulse for physiology and evolution. Nature (London) 375:117–120

    CAS  Google Scholar 

  • Grasemann H, Michler SA, Wallot M, Ratjen F (1997) Decreased concentration of exhaled nitric oxide (NO) in patients with cystic fibrosis. Pediatr Pulmonol 24:173–177

    PubMed  CAS  Google Scholar 

  • Grassle JF (1985) Hydrothermal vent animals: distribution and biology. Science 229:713–717

    PubMed  CAS  Google Scholar 

  • Gratz RK, Ar A, Geiser J (1981) Gas tension profile of the lung of the viper. Vipera xanthina palestinae. Respir Physiol 44:165–171

    PubMed  CAS  Google Scholar 

  • Gravel D, Bell T, Barbera C, Bouvier T, Pommier T et al (2011) Experimental niche evolution alters the strength of the diversity - productivity relationship. Nature (London) 469:89–92

    CAS  Google Scholar 

  • Gray IE (1954) Comparative study of the gill area of marine fish. Biol Bull Mar Biol Lab (Woods Hole) 107:219–225

    Google Scholar 

  • Gray J (1968) Animal locomotion. Weidenfeld and Nicolson, London

    Google Scholar 

  • Green J, Corbet SA, Betney E (1973) Ecological studies on crater lakes in West Cameron. The blood of endemic cichlids in Barombi Mbo in relation to stratification and vertical distribution of the zooplankton. J Zool (London) 170:30–67

    Google Scholar 

  • Greenaway P, Taylor HH (1976) Aerial gas exchange in Australian arid-zone crab, Parathelphusa transversa, von Mertens. Nature (London) 262:711–713

    CAS  Google Scholar 

  • Greenberg JM, Thompson FY, Brooks SK, Shannon JM, McCormick-Shannon K et al (2002) Mesenchymal expression of vascular endothelial growth factors D and A defines vascular patterning in developing lung. Dev Dyn 224:144–153

    PubMed  CAS  Google Scholar 

  • Greener M (2008) Its life, but just as we know it. EMBO Rep 9:1067–1069

    PubMed  CAS  Google Scholar 

  • Greenlee KJ, Harrison JF (2004) Development of respiratory function in the American locust Schistocerca americana. J Exp Biol 207:509–517

    PubMed  Google Scholar 

  • Greenlee KJ, Henry JR, Kirkton SD, Westneat MW, Fezzaa K et al (2009) Sychroton imaging of the grasshopper tracheal system: morphological and physiological components of tracheal hypermetry. Am J Physiol Regul Integr Comp Physiol 297:R1343–R1350

    PubMed  CAS  Google Scholar 

  • Gregersen MI, Rawson RA (1959) Blood volume. Physiol Rev 39:307–342

    PubMed  CAS  Google Scholar 

  • Gregory TR (2005) Animal genome size database. http://www.genomesize.com/

  • Griese M (1999) Pulmonary surfactant in health and human lung diseases: state of the art review. Eur Respir J 13:1455–1476

    PubMed  CAS  Google Scholar 

  • Griffith RW (1987) Freshwater or marine origin of the vertebrates? Comp Biochem Physiol 87A:523–531

    Google Scholar 

  • Grigg GC (1965) Studies of the Queensland lungfish, Neoceratodus forsteri (Krefft). Aust J Zool 13:243–257

    Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, New York

    Google Scholar 

  • Grindley JC, Bellusci S, Perkins D, Hogan BL (1997) Evidence for the involvement of the Gli gene family in embryonic mouse lung development. Dev Biol 188:337–348

    PubMed  CAS  Google Scholar 

  • Groebe K, Thews G (1987) Time courses of erythrocytic oxygenation in capillaries of the lung: lower and upper bounds on red cell transit times. Adv Exp Med Biol 215:165–169

    PubMed  CAS  Google Scholar 

  • Gross MG (1990) Oceanography: a view of the Earth, 5th edn. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Grote J (1967) Die Sauerstoffdiffusionkonstanten in Lungengewebe und Wasser und ihre Temperaturabhängigkeit. Pfuegers Arch Gesamte Physiol Menschen Tiere 295:245–254

    CAS  Google Scholar 

  • Grove TJ, Henderickson JW, Sidell BD (2004) Two species of Antarctic ice-fishes (Genus Champsocephalus) share a common genetic lesion leading to the loss of myoglobin expression. Polar Biol 27:579–585

    Google Scholar 

  • Grubb BR, Mills CD, Colacino JM, Schmidt-Nielsen K (1977) Effect of arterial carbon dioxide on cerebral blood flow in ducks. Am J Physiol 232:H596–H601

    PubMed  CAS  Google Scholar 

  • Grubb BR, Colacino JM, Schmidt-Nielsen K (1978) Cerebral blood flow in birds: effects of hypoxia. Am J Physiol 234:H230–H243

    PubMed  CAS  Google Scholar 

  • Grubb BR, Jones JH, Schmidt-Nielsen K (1979) Avian cerebral blood flow: influence of the Bohr effect on oxygen supply. Am J Physiol 236:H744–H753

    PubMed  CAS  Google Scholar 

  • Gruson ES (1976) Checklist of birds of the world. William Collins, London

    Google Scholar 

  • Gu YZ, Moran SM, Hogensch JB, Wartman L, Bradfield CA (1998) Molecular characterization and chromosomal localization of a third α-class hypoxia inducible factor subunit, HIF-3α. Gene Expr 7:205–213

    PubMed  CAS  Google Scholar 

  • Guazzi S, Price M, Damante FMG, Mattei MG, Di Lauro R (1990) Thyroid nuclear factor-1 (TTF-1) contains a homeodomain and displays a novel DNA binding specificity. EMBO J 9:3631–3639

    PubMed  CAS  Google Scholar 

  • Gudas L, Sporn MB, Roberts AB (1994) Cellular biology and biochemistry of retinoids. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids. Raven, New York, pp 443–520

    Google Scholar 

  • Guillemin K, Krasnov MA (1997) The hypoxic response: huffing and HIFing. Cell 89:9–12

    PubMed  CAS  Google Scholar 

  • Guillemin K, Groppe J, Ducker K, Treisman R, Hafen E et al (1996) The pruned gene encodes the Drosophila serum response factor and regulates cytoplasmic outgrowth during terminal branching of the tracheal system. Development 122:1353–1362

    PubMed  CAS  Google Scholar 

  • Guimond RW, Hutchison HV (1972) Pulmonary branchial and cutaneous gas exchange in the mudpuppy, Necturus maculosus maculosus (Rafinesque). Comp Biochem Physiol 42A:367–393

    Google Scholar 

  • Guimond RW, Hutchison HV (1973) Aquatic respiration: an unusual strategy in the hellbender Cryptobrachus alleganiensis alleganiensis (daudin). Science 182:1263–1265

    PubMed  CAS  Google Scholar 

  • Guimond RW, Hutchison VH (1976) Gas exchange of the giant salamanders of North America. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic, New York, pp 313–338

    Google Scholar 

  • Günther A, Ruppert C, Schmidt R, Markart P, Grimminger F et al (2001) Surfactant alteration and replacement in acute respiratory distress syndrome. Respir Res 2:353–364

    PubMed  Google Scholar 

  • Guo L, Degenstein L, Fuchs E (1996) Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev 10:165–175

    PubMed  CAS  Google Scholar 

  • Guruprasad S, Sekar K (2006) Artificial life and living systems: insight into artificial life and its implications in life science research. Bioinformation 1:139–140

    PubMed  Google Scholar 

  • Gustafsson MV, Leone AM, Persson MG, Wiklund NP, Moncada S (1991) Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem Biophys Res Commun 18:852–857

    Google Scholar 

  • Gustafsson MV, Palmblad M, Curstedt T, Johansson J, Schurch S (2000) Palmitoylation of a pulmonary surfactant protein C analogue affects the surface associated lipid reservoir and film stability. Biochimica Biophys Acta 1466:169–178

    CAS  Google Scholar 

  • Gutteridge JMC, Halliwell B (2000) Free radicals and antioxidants in the year 2000: a historical look to the future. Ann NY Acad Sci 899:136–147

    PubMed  CAS  Google Scholar 

  • Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91:807–819

    PubMed  CAS  Google Scholar 

  • Gyarfas K, Pollock GH, Stein SN (1949) Central inhibitory effects of carbon dioxide. IV. Convulsive phemomena. Proc Soc Exper Biol Med 70:292–293

    CAS  Google Scholar 

  • Haagsman HP, Diemel RV (2001) Surfactant-associated proteins: functions and structural variation. Comp Biochem Physiol A 129:91–108

    CAS  Google Scholar 

  • Haagsman HP, Herias V, van Eijk M (2003) Surfactant phospholipids and proteins in lung defence. Acta Pharmacol Sin 12:1301–1303

    Google Scholar 

  • Haase VH (2006) Hypoxia-inducible factors in the kidney. Am J Physiol Renal Physiol 291:F271–F281

    PubMed  CAS  Google Scholar 

  • Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow M (1998) Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92:253–263

    PubMed  CAS  Google Scholar 

  • Hadley NF (1994) Ventilatory patterns and respiratory transpiration in adult terrestrial insects. Physiol Zool 67:175–189

    Google Scholar 

  • Haefeli-Bleuer B, Weibel ER (1988) Morphometry of the human pulmonary acinus. Anat Rec 220:401–414

    PubMed  CAS  Google Scholar 

  • Hagner-Holler S, Schoen A, Erker W, Mardsen JH, Rupprecht R et al (2004) A respiratory hemocyanin from an insect. Proc Natl Acad Sci USA 101:871–874

    PubMed  CAS  Google Scholar 

  • Halbower AC, Tuder RM, Franklin WA, Pollack JS, Forstermann U, Abman SH (1994) Maturation-related changes in endothelial nitric oxide synthetase immunolocalization in developing ovine lung. Am J Physiol Lung Cell Mol Physiol 267:L585–L591

    CAS  Google Scholar 

  • Hall BK (1999) The neural crest in development and evolution. Springer, New York, p 313

    Google Scholar 

  • Hall SM, Hislop AA, Harworth SG (2002) Origin, differentiation, and maturation of human pulmonary veins. Am J Respir Cell Mol Biol 26:333–340

    PubMed  CAS  Google Scholar 

  • Hallam JF, Dawson TJ, Holland RAB (1989) Gas exchange in the lung of a dasyurid marsupial: morphometric estimation of diffusion capacity and blood oxygen uptake kinetics. Respir Physiol 77:309–322

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, Cambridge

    Google Scholar 

  • Hallman M, Epstein BL, Gluck L (1981) Analysis of labeling and clearance of lung surfactant phospholipids in rabbit: evidence of bidirectional surfactant flux between lamellar bodies and alveolar lavage. J Clin Invest 68:742–751

    PubMed  CAS  Google Scholar 

  • Hallman M, Glumoff V, Ramet M (2004) Surfactant in respiratory distress syndrome and lung injury. Comp Biochem Physiol A Mol Integr Physiol 129:287–294

    Google Scholar 

  • Hamada K, Oike Y, Takakura N, Ito Y, Jussila L et al (2010) VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis. Blood 96:3793–3800

    Google Scholar 

  • Hamid Q, Springall DR, Riveros-Moreno V, Chanez P, Howarth P et al (1993) Induction of nitric oxide synthetase in asthma. Lancet 342:1510–1513

    PubMed  CAS  Google Scholar 

  • Hammond P (1992) Species inventory. In: Groombridge B (ed) Global biodiversity: status of the Earth’s living resources. Chapman and Hall, London, pp 17–39

    Google Scholar 

  • Hamvas A, Nogee LM, Mallory GB, Spray TL, Huddleston CD et al (1997) Lung transplantation for treatment of infants with surfactant protein B deficiency. J Pediatr 130:231–239

    PubMed  CAS  Google Scholar 

  • Han RNN, Liu J, Tanswell AK, Post M (1992) Expression of basic fibroblast growth factor and receptor: immunolocalization studies in developing rat fetal lung. Pediatr Res 31:435–440

    PubMed  CAS  Google Scholar 

  • Han RN, Liu J, Tanswell AK, Post M (1993) Ontogeny of platelet-derived growth factor receptor in fetal rat lung. Microsc Res Tech 26:381–388

    PubMed  CAS  Google Scholar 

  • Händeler K, Wägele H (2007) Preliminary study on molecular phylogeny of Sacoglossa and a compilation of their food organisms. Bonn Zool Beit 55:231–254

    Google Scholar 

  • Händeler K, Grzymbowski YP, Krug P, Wägele H (2009) Functional chloroplasts in metazoan cells – a unique evolutionary strategy in animal life. Front Zool 6:28. doi:10.1186/1742-9994-6-28

    PubMed  Google Scholar 

  • Handerson LJ (1913) The fitness of the environment. Macmillan, New York

    Google Scholar 

  • Hansen HJ (1893) Organs and characters in different orders of Arachnida. Entomologiske Medd 4:135–144

    Google Scholar 

  • Hansen JE, Ampaya EP (1975) Human air space shapes, sizes, areas, and volumes. J Appl Physiol 38:990–995

    PubMed  CAS  Google Scholar 

  • Hansen VK, Wingstrand KG (1960) Further studies on the nonnucleated erythrocytes of Maurolieus mulleri, and comparison with blood cells of related fish. AF Host and Sons, Dana Report No 54, Copenhagen

    Google Scholar 

  • Haque T, Nakada S, Hamdy RC (2007) A review of FGF-18: its expression, signalling pathways and possible functions during embryogenesis and post-natal development. Histol Histopathol 22:97–105

    PubMed  CAS  Google Scholar 

  • Harden KA, Bartlett RG, Barnes H, Reid L, Barthaker A, Waters WR (1962) Oxygen cost of breathing: part I. Am Rev Respir Dis 85:387–391

    PubMed  CAS  Google Scholar 

  • Harishchandra RK, Saleem M, Galla HJ (2010) Nanoprticle interaction with model lung surfactant monolayers. J R Soc Interface 7:S15–S26

    PubMed  CAS  Google Scholar 

  • Harkema JR, Mariassy A, George J, Hyde DM, Plopper C (1991) Epithelial cells of the conducting airways: a species comparison. In: Farmer SG, Hay DWP (eds) Lung biology in health and disease: the airway epithelium, vol 55. Marcel, New York, pp 3–39

    Google Scholar 

  • Harrison JF (2003) Tracheal system. In: Resh VH, Carde R (eds) Encyclopedia of insects. Academic, New York, pp 23–41

    Google Scholar 

  • Harrison P, Zummo G, Farina F, Tota B, Johnson IA (1991) Gross anatomy, myoarchitecture, and ultrastructure of the heart ventricle in hemoblobinless ice-fish Chaenocephalus aceratus. Can J Zool 69:1339–1347

    Google Scholar 

  • Harrison JF, Kaiser A, Vandenbrooks JM (2010) Atmospheric oxygen level and the evolution of insect body size. Proc R Soc Lond B Biol Sci 277:1937–1946

    Google Scholar 

  • Hartsfield CL (2002) Cross-talk between carbon monoxide and nitric oxide. Antioxid Redox Signal 4:301–307

    PubMed  CAS  Google Scholar 

  • Hartshorn KL, White MR, Tecle T, Sorensen G, Holmskov U, Crouch EC (2010) Viral aggregating and opsonizing activity in collectin trimers. Am J Physiol Lung Cell Mol Physiol 298:L79–L88

    PubMed  CAS  Google Scholar 

  • Harvey EN (1928) The oxygen consumption of luminous bacteria. J Comp Physiol 11:469–475

    CAS  Google Scholar 

  • Harvey HW (1957) The chemistry and fertility of of sea waters. Cambridge University Press, London

    Google Scholar 

  • Hashimoto K, Yamaguchi Y, Matsura F (1960) Comparative studies on the hemoglobins of salmon. IV. Oxygen dissociation curve. Bull Jpn Soc Sci Fish 26:827–834

    CAS  Google Scholar 

  • Hass TL (2005) Endothelial cell regulation of matrix metalloproteinases. Can J Physiol Pharmacol 83:1–7

    Google Scholar 

  • Hastings RH, Powell FL (1986) Physiological dead space and effective parabronchial ventilation in ducks. J Appl Physiol 60:85–91

    PubMed  CAS  Google Scholar 

  • Haughton TM, Kerkut GA, Munday KA (1958) The oxygen dissociation and alkaline denaturation of hemoglobin from two species of earthworms. J Exp Biol 35:360–368

    CAS  Google Scholar 

  • Hawgood S (1997) Surfactant: composition, structure, and metabolism. In: Crystal RG, West JB, Barnes PJ, Weibel ER (eds) The lung: scientific foundations, 2nd edn. Lippincott-Raven, Philadelphia, PA, pp 557–571

    Google Scholar 

  • Hawgood S, Benson BJ, Schilling H, Damm D, Clements JA, White RT (1987) Nucleotide and amino acid sequences of pulmonary surfactant protrin SP-18 and evidence for co-operation between SP-18 and SP 28–36 in surfactant lipid adsorption. Proc Natl Acad Sci USA 84:66–70

    PubMed  CAS  Google Scholar 

  • Hayashi S, Omata Y, Sakamoto H, Higashimoto Y, Hara T et al (2004) Characterization of rat heme oxygenase-3 gene implication of processed pseudogenes derived from heme oxygenase-2 gene. Gene 336:241–250

    PubMed  CAS  Google Scholar 

  • Hayes JM (1983) Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis. In: Schopf WJ (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 291–320

    Google Scholar 

  • Hayes JM, Kaplan IR, Wedeking KW (1983) Precamrian organic geochemistry, preservation of the record. In: Schopf WJ (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 93–134

    Google Scholar 

  • Hazelhoff EH (1939) Über die Ausnützung des Sauerstoffs bei verschiedenen Wasserrtieren. Z Vergl Physiol 26:306–327

    Google Scholar 

  • Heath D, Williams DR (1981) Man at high altitude: the pathophysiology of acclimatization and adaptation. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Heath D, Williams DR, Dickson J (1984) The pulmonary arteries of the yak. Cardiovasc Res 18:133–139

    PubMed  CAS  Google Scholar 

  • Heatwole H (1981) Role of the saccular lung in the diving of the sea krait, Laticuda colubrine (Serpentes: Laticaudidae). Aust J Herpetol 1:11–16

    Google Scholar 

  • Hedgpeth J (1965) Approaches to paleoecology. Wiley, New York, pp 11–18

    Google Scholar 

  • Hedrick MS, Jones DR (1993) The effects of altered aquatic and aerial respiratory gas concentrations on air breathing patterns in a primitive fish Amia calva. J Exp Biol 181:81–94

    Google Scholar 

  • Heiman J, Delbro D (2005) Carbon monoxide- a toxic gas and a signal molecule with therapeutic potential. Lakartidningen 102:642–645

    PubMed  Google Scholar 

  • Heisler N (1982) Intracellular and extracellular acid-base regulation in the tropical freshwater teleosts, Synbranchus marmoratus in response to the transition from water-breathing to air-breathing. J Exp Biol 99:9–28

    PubMed  CAS  Google Scholar 

  • Heisler N (1989) Interactions between gas exchange, metabolism and ion transport in animals: an overview. Can J Zool 67:2923–2935

    CAS  Google Scholar 

  • Heisler N, Forcht G, Ultsch GR, Anderson JF (1982) Acid-base regulation in response to environmental hypercapnia in two aquatic salamanders, Siren lacertina and Amphiuma means. Respir Physiol 49:141–158

    PubMed  CAS  Google Scholar 

  • Heldin CM, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79:1283–1316

    PubMed  CAS  Google Scholar 

  • Hemmingsen EA (1965) Transfer of oxygen through solutions of heme pigments. Acta Physiol Scand Suppl 246:1–53

    Google Scholar 

  • Hemmingsen EA, Douglas EL (1977) Respiratory and circulatory adaptations to the absence of hemoglobin in Chaenichthyid fishes. In: Llano GS (ed) Adaptations within Antarctic ecosysyems. Gulf, Hauston, TX, pp 479–487

    Google Scholar 

  • Hemmingsen EA, Douglas EL, Johansen K, Millard RW (1972) Aortic blood flow and cardiac output in the hemoglobin-free fish, Chaenocephalus aceratus. Comp Biochem Physiol A 43:1045–1051

    PubMed  CAS  Google Scholar 

  • Hendry GAF (1993) Oxygen, free radicals processes and seed longevity. Seed Sci Res 3:141–153

    CAS  Google Scholar 

  • Henry JD, Fedde MR (1970) Pulmonary circulatory time in the chicken. Poult Sci 49:1286–1293

    PubMed  CAS  Google Scholar 

  • Henry JR, Harrison JF (2004) Plastic and evolved responses of larval trachea and mass to varying atmospheric oxygen content in Drosophila melanogaster. J Exp Biol 207:3559–3567

    PubMed  Google Scholar 

  • Henze M (1910) Ueber den Einfluss des Sauerstoffdrucks auf den Gaswechsel einiger Meerrestiere. Biochem Z 26:255–278

    CAS  Google Scholar 

  • Herget J, Wilhem J, Novotna J, Eckhardt A, Vytasek R, Mrazkova L, Ostadal M (2000) A possible role of the oxidant tissue injury in the development of hypoxic pulmonary hypertension. Physiol Res 49:493–501

    PubMed  CAS  Google Scholar 

  • Herman ZS (1997) Carbon monoxide: a novel neural messenger or putative neurotransmitter. Pol J Pharmacol 49:1–4

    PubMed  CAS  Google Scholar 

  • Hermida GN, Fiorito LE (1994) Estereoultraestructura del pulmón de anuros bufónidos, I. Bufo arenarum. Cuadernos de Herpertologia 8:25–29

    Google Scholar 

  • Hermida GN, Fiorito LE, Farías A (1998) The lung of the common toad, Bufo arenum (Anura: Bufonidae) A light and electron microscopy study. Biocell 22:19–26

    PubMed  CAS  Google Scholar 

  • Hermida GN, Farías A, Fiorito LE (2002) Ultrastructural characteristics of the lung of Melanophryniscus stelzneri stelzneri (Weyenberg, 1875) (Anura, Bufonidae) Biocell (Mendoza) v26 n.3 Mendoza ago./disc.2002

    Google Scholar 

  • Herreid CF, Full RJ (1988) Energetics of locomotion. In: Burggren WW, McMahob BR (eds) Biology of the land crabs. Cambridge University Press, Cambridge, pp 333–377

    Google Scholar 

  • Hershenson MB, Abe MK, Kelleher MD, Naureckas ET, Garland A, Zimmerman A, Rubinstein VJ, Solway J (1994) Recovery of airway structure and function after hyperoxic exposure in immature rats. Am J Respir Crit Care Med 149:1663–1669

    PubMed  CAS  Google Scholar 

  • Hess WR (1914) Das Prinzip des kleinstein Kraftverbrauches im Dienste hämodynamischer Forschung. Archiv Anat Physiol 1914

    Google Scholar 

  • Hessler RR, Kaharl VA (1995) Sea floor hydrothermal systems: physical, chemical, biological, and geological interactions (Humphris SE, Zierenberg RA, Mullineaux LS, Thompson RE (eds). American Geophysical Union, Washington, DC, pp 72–84

    Google Scholar 

  • Hessler AM, Lowe DR, Jones RL, Bird DK (2004) A lower limit for atmospheric carbon dioxide levels 3.2 billion years ago. Nature (London) 428:736–738

    CAS  Google Scholar 

  • Hetz SK, Bradley TJ (2005) Insects breathe discontinuously to avoid oxygen toxicity. Nature (London) 433:516–569

    CAS  Google Scholar 

  • Hilfer SR (1996) Morphogenesis of the lung: control of embryonic and fetal branching. Annu Rev Physiol 58:93–113

    PubMed  CAS  Google Scholar 

  • Hilken G (1998) Vergleich von Tracheensystemen unter phy-logenetischen Aspekten. Verh Naturwiss Ver Hamburg 37:5–94

    Google Scholar 

  • Hill JE (1944) Rodent miners. Nat Hist 53:21

    Google Scholar 

  • Hillenius WJ, Ruben JA (2004) The evolution of endothermy in terrestrial vertebrates: who? when? why? Physiol Biochem Zool 77:1019–1042

    PubMed  Google Scholar 

  • Hills BA (1990) The role of lung surfactant. Br J Anaesth 65:13–29

    PubMed  CAS  Google Scholar 

  • Hinde R, Smith DC (1974) Chloroplast symbiosis and the extent to which it occurs in Sacoglossa (Gastropoda: Mollusca). Biol J Linn Soc (London) 6:349–356

    Google Scholar 

  • Hjort K, Golgberg AV, Tsaousis AD, Hirt RP, Embley TM (2010) Diversity and reductive evolution of mitochondria among microbial eukaryotes. Phil Trans R Soc Lond B Biol Sci 365:713–727

    CAS  Google Scholar 

  • Hlastala MP, Berger AJ (1996) Physiology of respiration. Oxford University Press, Oxford

    Google Scholar 

  • Hlastala MP, Standaert TA, Pierson DJ, Luchtel DL (1985) The matching of ventilation and perfusion in the lung of the tegu, Tupinambis nigropunctus. Respir Physiol 60:277–294

    PubMed  CAS  Google Scholar 

  • Hoback WW, Barnhart MC (1996) Lethal limits and sublethal effects of hypoxia on the amphipod Gammarus pseudolimneus. J N Am Benth Soc 15:117–126

    Google Scholar 

  • Hochachka PW (1973) Comparative intermediary metabolism. In: Prosser CL (ed) Comparative animal physiology, 3rd edn. Saunders, Philadelphia, PA, pp 212–278

    Google Scholar 

  • Hochachka PW (1997) Oxygen - a key regulatory metabolite in metabolic defense against hypoxia. Am Zool 37:595–603

    CAS  Google Scholar 

  • Hoeger U, Mommsen TP (1985) Role of free amino acids in the oxidative metabolism of cephalopod hearts. Circulation, respiration, and metabolism. Springer, Berlin, pp 367–376

    Google Scholar 

  • Hoese B (1983) Struktur und Entwicklung der Lungen der Tylidae (Crustacea, Isopoda, Oniscoidea). Zool Jb Anat 109:487–501

    Google Scholar 

  • Hoetzel A, Schmidt R (2006) Carbon monoxide: poison or potential therapeutic? Anaesthesist 10:1068–1079

    Google Scholar 

  • Höfer AM, Perry SF, Schmitz A (2000) Respiratory system of arachnids II: morphology of the tracheal system of Leiobunum rotundum and Nemastoma lugubre (Arachnida, Opiliones). Arthropod Struct Dev 29:13–21

    PubMed  Google Scholar 

  • Hoffman HJ, Schopf JW (1983) Early Proterozoic microfossils. In: Schopf JW (ed) Earth's earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 321–360

    Google Scholar 

  • Hoffman EC, Reyes H, Chu FF, Sander F, Conley LH et al (1991) Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 252:954–958

    PubMed  CAS  Google Scholar 

  • Hogan BL (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10:1580–1594

    PubMed  CAS  Google Scholar 

  • Hogan BL (1999) Morphogenesis. Cell 96:225–233

    PubMed  CAS  Google Scholar 

  • Holeton GF (1970) Oxygen uptake and circulation by a hemoglobinless Antarctic fish (Chaenocephalus aceratus, Lonnberg) compared with three red-blooded Antarctic fish. Comp Biochem Physiol 34:457–471

    PubMed  CAS  Google Scholar 

  • Holeton GF (1980) Oxygen as an environmental factor of fishes. In: Ali MA (ed) Environmental biology of fishes. Plenum, New York, pp 7–32

    Google Scholar 

  • Holland HD (1978) The chemistry of the atmosphere and the oceans. Wiley, New York

    Google Scholar 

  • Holland JB (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Holland ND, Chen J (2001) Origin and early evolution of the vertebrates: new insights from advances in molecular biology, anatomy, and paleontology. Bioessays 23:142–151

    PubMed  CAS  Google Scholar 

  • Holland RAB, Forster RE (1966) The effect of size of red cells on the kinetics of their oxygen uptake. J Gen Physiol 49:727–742

    PubMed  CAS  Google Scholar 

  • Holliday R (1995) Understanding aging. Cambridge University Press, Cambridge

    Google Scholar 

  • Holm-Hansen O (1968) Ecology, physiology, and biochemistry of blue green algae. Ann Rev Microbiol 22:47–70

    CAS  Google Scholar 

  • Hönisch B, Hemming NG, Archer D, Siddall M, McManus JF (2009) Atmospheric carbon dioxide concentration across the mid-Pleistocene transition. Science 324:1551–1554

    PubMed  Google Scholar 

  • Hopkins SR, Powell FL (1998) Ventilation-perfusion heterogeneity: insights from comparative physiology. In: Hlastala MP, Robertson HT (eds) Complexity in structure and function of the lung. Marcel, New York, pp 549–570

    Google Scholar 

  • Hoppeler H, Vogt M, Weibel ER, Flück M (2003) Response of skeletal muscle mitochondria to hypoxia. Exp Physiol 88(1):109–119

    PubMed  CAS  Google Scholar 

  • Horie T, Hildebrandt J (1971) Dynamic compliance, limit cycles, and static equilibria of excised cat lungs. J Appl Physiol 31:423–430

    PubMed  CAS  Google Scholar 

  • Horn MH, Gibson RN (1989) Intertidal fishes. In: Gould JL, Gould CG (eds) Life at the edge: readings from scientific American. WH Freeman and Company, New York, pp 59–67

    Google Scholar 

  • Horsefield K, Woldenberg MJ (1986) Branching ratio and growth of tree-like structures. Respir Physiol 63:97–107

    Google Scholar 

  • Horsfield K (1990) Diameters, generations, and orders of branches in the bronchial tree. J Appl Physiol 68:457–461

    PubMed  CAS  Google Scholar 

  • Horsfield K, Thurbeck A (1981) Relation between diameter and flow in the bronchial tree. Bull Math Biol 43:681–691

    PubMed  CAS  Google Scholar 

  • Hosler P (1977) Castrophic chemical events in the history of the oceans. Nature (London) 267:403–408

    Google Scholar 

  • Hou C, Gheorghiu S, Coppens M-O, Huxley VH, Pfeifer P (2005) Gas diffusion through the fractal landscape of the lung: how deep does oxygen enter the alveolar system? In: Losa GA, Merlini D, Nonnenmacher TF, Weibel ER (eds) Fractal in biology and medicine, vol IV. Birkhäuser, Basel, pp 17–30

    Google Scholar 

  • Hou C, Gheorghiu S, Huxley VH, Pfeifer P (2010) Reverse engineering of oxygen transport in the lung: adaptation to changing demands and resources through space-filling networks. PLoS Comput Biol 6(8):e1000902. doi:10.1371/journal.pcbi.1000902

    PubMed  Google Scholar 

  • Hough ML, Shields GA, Evins LZ, Strauss H, Handerson RA, Mackenzie S (2006) A major sulphur isotope event at c 510 Ma: a possible anoxia-extinction-volcanism connection during the Early-middle Cambrian transition? Terra Nova 18:257–263

    CAS  Google Scholar 

  • Houlihan DF, Innes AJ, Wells MJ, Wells J (1982) Oxygen consumption and blood gases. J Comp Physiol B 148:35–40

    Google Scholar 

  • Hourdez S, Weber RE (2005) Molecular and functional adaptations in deep-sea hemoglobins. J Inorg Biochem 99:130–141

    PubMed  CAS  Google Scholar 

  • Howard G, Schopf JW (1983) Biochemical evolution of anaerobic energy conversion: the transition from fermentation to anoxygenic photosynthesis. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 135–148

    Google Scholar 

  • HSDB (2003) Hazardous Substances (Databank): a database of the National Library of Medicine’s TOXNET system. http://toxnet.nlm.nih.gov

  • Hsia CC (2004) Signals and mechanisms of compensatory lung growth. J Appl Physiol 97:1992–1998

    PubMed  Google Scholar 

  • Hu CJ, Mang LY, Chodosh LA, Keith B, Simon MC (2003) Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol Cell Biol 23:9361–9374

    PubMed  CAS  Google Scholar 

  • Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95:7987–7992

    PubMed  CAS  Google Scholar 

  • Huber JA, Mark-Welch DB, Morrison HG, Huse SM, Neal PR, Butterfield DA, Sogin ML (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100

    PubMed  CAS  Google Scholar 

  • Huebner E, Chee G (1978) Histological and ultrastructural specialization of the digestive tract of the intestinal air breather Hoplosternum thoracatum (Teleost). J Morph 157:301–325

    Google Scholar 

  • Huey RB, Ward PD (2005) Hypoxia, global warming and terrestrial late Permian extinctions. Science 308:398–401

    PubMed  CAS  Google Scholar 

  • Hughes GM (1966) The dimesnsion of fish gills in relation to their function. J Exp Biol 45:177–195

    PubMed  CAS  Google Scholar 

  • Hughes GM (1972a) Distribution of oxygen tension in the blood and water along the secondary lamella of the ice-fish gill. J Exp Biol 56:481–492

    PubMed  CAS  Google Scholar 

  • Hughes GM (1972b) Morphometrics of fish gill. Respir Physiol 14:1–25

    PubMed  CAS  Google Scholar 

  • Hughes GM (1976) Fish respiratory physiology. In: Spencer-Davies P (ed) Perspectives in environmental biology. Pergamon, Oxford, pp 235–245

    Google Scholar 

  • Hughes GM (1980) Functional morphology of fish gills. In: Lahlou B (ed) Epithelial transport in lower vertebrates. Cambridge University Press, Cambridge, pp 15–36

    Google Scholar 

  • Hughes GM (1982) An introduction to the study of gills. In: Houlihan DF, Rankin JC, Shuttleworth TJ (eds) Gills. Cambridge University Press, Cambridge, pp 1–24

    Google Scholar 

  • Hughes GM (1984) General anatomy of the gills. In: Randall DJ (ed) Fish physiology, vol XA. Academic, London, pp 1–72

    Google Scholar 

  • Hughes GM (1995) The gills of the coelacanth, Latimeria chalumnae, a study in relation to body size. Philos Trans R Soc Lond 347B:427–438

    Google Scholar 

  • Hughes AL (1999a) Evolution of the arthropod prophenoloxidase/hexamerin protein family. Immunogenetics 49:106–114

    PubMed  CAS  Google Scholar 

  • Hughes AL (1999b) Adaptive evolution of genes and genomes. Oxford University Press, Oxford

    Google Scholar 

  • Hughes GM, Al-Kadhomiy NK (1986) Gill morphometry of the mudskipper, Boleophthalmus boddardti. J Mar Biol Ass UK 66:671–682

    Google Scholar 

  • Hughes AL, Hughes MK (1995) Small genomes for better flyers. Nature (London) 377:391

    CAS  Google Scholar 

  • Hughes GM, Morgan M (1973) The structure of fish gills in relation to their respiratory function. Biol Rev 48:419–475

    Google Scholar 

  • Hughes GM, Munshi JSD (1979) Fine structure of the gills of some Indian air-breathing fishes. J Morphol 160:169–194

    Google Scholar 

  • Hughes GM, Shelton G (1958) The mechanism of gill ventilation in three freshwater teleosts. J Exp Biol 35:807–823

    Google Scholar 

  • Hughes GM, Weibel ER (1976) Morphometry of fish gills. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic, London, pp 213–232

    Google Scholar 

  • Hughes GM, Knight B, Scammel CA (1969) The distribution of PO2 and hydrostatic pressure changes within the branchial chambers in relation to gill ventilation in the shore crab Carcinus maenas L. J Exp Biol 51:203–220

    Google Scholar 

  • Hughes GM, Dube SC, Munshi JSD (1973) Surface area of the respiratory organs of the climbing perch, Anabas testudineus (Pisces: Anabantidae). J Zool (London) 170:227–243

    Google Scholar 

  • Hughes GM, Horimoto M, Kikuchi Y, Kakiuchi Y, Koyama T (1981) Blood flow velocity in microvessels of the gill filaments of goldfish (Carassius auratus) L. J Exp Biol 90:327–331

    Google Scholar 

  • Hughes GM, Munshi JSD, Ojha J (1986a) Post-embryonic development of water- and air breathing organs of Anabas testudineus (Bloch). J Fish Biol 29:443–450

    Google Scholar 

  • Hughes GM, Perry SF, Piiper J (1986b) Morphometry of the gills of the elasmobranch Scyliohinus stellaris in relation to body size. J Exp Biol 121:27–42

    Google Scholar 

  • Hui CC, Slusarski D, Platt KA, Holmgren R, Joyner AL (1994) Expression of three mouse homologs of the Drosophila segment polarity gene cubitus interruptus, GLI, GLI-2, and GLI-3, in ectoderm- and mesoderm-derived tissue suggests multiple roles during postimplantation development. Dev Biol 162:402–413

    PubMed  CAS  Google Scholar 

  • Hunt BM, Heofling K, Cheng CHC (2003) Annual warming episodes in sea water temperatures in McMurdo Sound in relationship to endogenous ice in notothenioid fish. Antarct Sci 15:333–338

    Google Scholar 

  • Hurtgen MT, Pruss SB, Knoll AH (2009) Evaluating the relationship between the carbon and sulphur cycles in the later Cambrian ocean: an example from the Portal au Port Group, western Newfoundland, Canada. Earth Planet Sci Lett 281:288–297

    CAS  Google Scholar 

  • Hussain SNA (1998) Activity of nitric oxide synthetase in the ventilatory muscle vasculature. Comp Biochem Physiol 119A:191–201

    CAS  Google Scholar 

  • Hutchison VH (1998) The Goliath Frog (Conraua goliath): physiological ecology of the largest anuran. Intl Symp Animal Adaptation, Inst Zool, Academia Sinica, Taipei 1–5

    Google Scholar 

  • Hutchison GE (2008) Amphibians: lungs’ lift loss. Curr Biol 18:R392–R393

    PubMed  CAS  Google Scholar 

  • Hutchison VH, Haines HB, Engbretson G (1976) Aquatic life at high altitude: respiratory adaptations in the Lake Titicaca frog, Telmatobius coleus. Respir Physiol 27:115–129

    PubMed  CAS  Google Scholar 

  • Hyatt BA, Shangguan X, Shannon JM (2002) BMP-4 modulates fibroblast growth factor-mediated induction of proximal and distal lung differentiation in mouse embryonic tracheal epithelium in mesenchyme free culture. Dev Dyn 225:153–165

    PubMed  CAS  Google Scholar 

  • Hyde DM, Tyler NK, Putney LF, Singh P, Gundersen HJ (2004) Total number and mean size of alveoli in mammalian lung estimated using fractionator sampling and unbiased estimates of the Euler characteristic of alveolar openings. Anat Rec 277:216–226

    CAS  Google Scholar 

  • Hyden P, Lindberg R (1970) Hypoxia induced torpor in pocket mice (genus Perognathus). Comp Biochem Physiol 33A:167–179

    Google Scholar 

  • Hyman LH (1951) The invertebrates: platyhelminthes and rynchocoela, vol II, The acoelomate bilateria. McGraw-Hill, New York

    Google Scholar 

  • Ialenti A, Ianaro A, Moncada S, Di Rosa M (1992) Modulation of acute inflammation by endogenous nitric oxide. Eur J Pharmacol 211:177–198

    PubMed  CAS  Google Scholar 

  • Ianas O, Olenescu R, Badescu I (1991) Melatonin involvement in oxidative stress. Rom J Endocrinol 29:147–153

    CAS  Google Scholar 

  • Ignarro LJ (2002) Nitric oxide biology and pathobiology. Academic, London

    Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS, Bryns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    PubMed  CAS  Google Scholar 

  • Ikeda K, Shaw-White JR, Wert SE, Whitsett JA (1996) Hepatocyte nuclear factor-3 activates transcription of thyroid transcription factor-1 in respiratory epithelial cells. Mol Cell Biol 16:3626–3636

    PubMed  CAS  Google Scholar 

  • Ilyas M (2005) Wnt signalling and the mechanistic basis of tumor development. J Pathol 205:130–144

    PubMed  CAS  Google Scholar 

  • Ingber DE (1998) The architecture of life. Sci Am 278:18–57

    Google Scholar 

  • Ingber DE (2008) Tensegrity and mechanotransduction. J Bodyw Mov Ther 12:198–200

    PubMed  Google Scholar 

  • Ingersoll AP (2007) Express dispatches. Nature (London) 450:617–618

    CAS  Google Scholar 

  • Ingi T, Cheng J, Ronnet GV (1996) Carbon monoxide: an endogenous modulator of the nitric oxide-cyclic GMP signaling system. Neuron 16:835–842

    PubMed  CAS  Google Scholar 

  • Issac DD, Andrew DJ (1996) Tubulogenesis in Drosophila: a requirement for the tracheates gene product. Genes Dev 10:103–117

    Google Scholar 

  • Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J et al (2001) Targetting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    PubMed  CAS  Google Scholar 

  • Jaenicke E, Decker H, Gebauer W, Markl J, Burmester T (1999) Identification, structure and properties of hemocyanins from diplopod Myriapoda. J Biol Chem 274:29071–29074

    PubMed  CAS  Google Scholar 

  • Jaensch SM, Cullen L, Raidal SR (2001) The pathology of normobaric oxygen toxicity in budgerigars (Mellopsitacus undulatus). Avian Pathol 30:135–142

    PubMed  CAS  Google Scholar 

  • Jahnke L, Klein HP (1979) Oxygen as a factor in eukaryocyte evolution: some effects of low levels of oxygen on Saccharomyces cerevisiae. Orig Life 9:329–334

    PubMed  CAS  Google Scholar 

  • Jakubowski M, Byczkowska-Smyk W, Mikhalev Y (1969) Vascularization and size of the respiratory surfaces in the Antarctic white-blooded fish, Chaenichthys rugosus (Regan) (Percoidei, Chaenichthydea). Zool Poloniae 19:303–317

    Google Scholar 

  • Jankov RP, Luo X, Campbell A, Belcastro R, Cabacungan J et al (2003) Fibroblast growth factor receptor-1 and neonatal compensatory lung growth after exposure to 95% oxygen. Am J Respir Crit Care Med 167:1554–1561

    PubMed  Google Scholar 

  • Jansen RG, Randall DJ (1975) The effects of changes in pH and PCO2 in blood and water on breathing in rainbow trout, Salmo gairdneri. Respir Physiol 25:235–245

    Google Scholar 

  • Jarecki J, Johnson E, Krasnow MA (1999) Oxygen regulation of air way branching in Drosophila is mediated by branchless FGF. Cell 99:211–220

    PubMed  CAS  Google Scholar 

  • Jarman C (1970) Evolution of life. Bantam Books, Toronto

    Google Scholar 

  • Jean JC, Lü J, Joyce-Brady M, Cardoso WV (2008) Regulation of FGF-10 gene expression in murine mesenchymal cells. J Cell Biochem 103:1886–1894

    PubMed  CAS  Google Scholar 

  • Jenkinson SG (1982) Pulmonary oxygen toxicity. Clin Chest Med 3:109–119

    PubMed  CAS  Google Scholar 

  • Jensen FB, Weber RE (1985) Kinetics of the acclimational responses of tench to combined hypoxia and hypercapnia. I. Respiratory responses. J Comp Physiol B 156:197–203

    Google Scholar 

  • Jessop NM (1995) General zoology, 6th edn. McGraw-Hill, New York

    Google Scholar 

  • Jeuken M (1957) A study of the respiration of Misgurnus fossilis (L). The pond loach Thesis, University of Leiden

    Google Scholar 

  • Jiang BH, Semenza GL, Bauer C, Marti HH (1996) Hypoxia-inducible factor-1 levels vary exponentially over a physiologically relevant range of O2-tension. Am J Physiol Cell Physiol 271:C1172–C1180

    CAS  Google Scholar 

  • Jiang W, Welty SE, Couroucli XI, Barrios R, Kondraganti SR et al (2004) Disruption of the Ah receptor gene alters the susceptibility of mice to oxygen-mediated regulation of pulmonary and hepatic cytochromes P4501A expression and exacerbates hyperoxic lung injury. J Pharmacol Exp Ther 310:512–519

    PubMed  CAS  Google Scholar 

  • Jobe AH, Ikegami M (2000) Lung development and function in preterm infants in the surfactant treatment era. Annu Rev Physiol 62:825–846

    PubMed  CAS  Google Scholar 

  • Johansen K (1960) Circulation in the hagfish, Myxine glutinosa L. Biol Bull 118:289–295

    Google Scholar 

  • Johansen K (1968) Air breathing fishes. Sci Am 219:102–111

    PubMed  CAS  Google Scholar 

  • Johansen K (1970) Air-breathing in fish. In: Hoar WS, Randall DJ (eds) Fish Physiology, vol 4. Academic, London, pp 361–411

    Google Scholar 

  • Johansen K (1972) Heart and circulation in gill, skin and lung breathing. Respir Physiol 14:193–210

    PubMed  CAS  Google Scholar 

  • Johansen K (1982) Respiratory gas exchange of vertebrate gills. In: Houlihan DF, Rankin JC, Shuttleworth TJ (eds) Gills. Cambridge University Press, Cambridge, pp 99–128

    Google Scholar 

  • Johansen K (1987) The world as a laboratory: physiological insights from natures experiments. In: McLennan H, Ledsome JR, McIntosh CHS (eds) Advances in physiological research. Plenum, New York, pp 377–396

    Google Scholar 

  • Johansen K, Lenfant C (1966) Gas exchange in the Cephalopod, Octopus dofleini. Am J Physiol 210:910–918

    PubMed  CAS  Google Scholar 

  • Johansen K, Lenfant C (1967) Respiratory function in the South American Lungfish. J Exp Biol 46:205–218

    Google Scholar 

  • Johansen K, Lenfant C (1972) A comparative approach to the adaptability of O2-Hb affinity. In: Roth M, Astrup P (eds) Oxygen affinity of hemoglobin and red cell acid base status. Munksgaard, Copenhagen, pp 750–780

    Google Scholar 

  • Johansen K, Martin AW (1966) Circulation in the giant earthworm. Glossoscolex giganteus. I. Contractile processes and pressure gradients in the large blood vessels. J Exp Biol 43:333–347

    Google Scholar 

  • Johansen K, Lenfant C, Grigg GF (1967) Respiratory control in the lungfish, Neoceratodus forsteri (Krefft). Comp Biochem Physiol 20:835–854

    Google Scholar 

  • Johansen K, Lenfant C, Hanson D (1970) Respiration in a primitive air-breather, Amia calva. Respir Physiol 9:162–174

    PubMed  CAS  Google Scholar 

  • Johansen K, Lomholt JP, Maloiy GMO (1976) Importance of air- and water-breathing in relation to size of the African lungfish Protopterus amphibius, Peters. J Exp Biol 65:395–399

    Google Scholar 

  • Johansen K, Mangum CP, Lykkeboe G (1978) Respiratory properties of the blood of Amazon fishes. Can J Zool 56:898–906

    CAS  Google Scholar 

  • Johansson J, Curstedt T (1997) Molecular structures and interactions of pulmonary surfactant components. Eur J Biochem 244:675–693

    PubMed  CAS  Google Scholar 

  • Johansson J, Jornvall H, Eklund A, Christensen N, Robertson B, Curstedt T (1988) Hydrophobic 3.7 kDa surfactant polypeptide: structural characterization of the human and bovine forms. FEBS Lett 232:61–64

    PubMed  CAS  Google Scholar 

  • Johansson J, Curstedt T, Robertson B (1994) The proteins of the surfactant system. Eur Resp J 7:372–391

    CAS  Google Scholar 

  • Johnson MD, Oldach D, Delwiche CF, Stoecker DK (2007) Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra. Nature (London) 445:426–428

    CAS  Google Scholar 

  • Johnston CJ, Stripp BR, Piedbeouf B, Wright TW, Mango GW, Reed CK, Finkelstein JN (1998) Inflammatory and epithelial responses in mouse strains that differ in sensitivity to hyperoxic injury. Exp Lung Res 24:189–202

    PubMed  CAS  Google Scholar 

  • Johnston DT, Wolfe-Simon F, Pearson A, Knoll AH (2009) Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth’s middle age. Proc Natl Acad Sci USA 106:16925–16929

    PubMed  CAS  Google Scholar 

  • Jones JD (1961) Aspects of respiration in Planorbis corneus L and Lymnaea stagnalis L. (Gastropoda: Pulmonata). Comp Biochem Physiol 4:1–29

    PubMed  CAS  Google Scholar 

  • Jones JD (1972) Comparative physiology of respiration. Edward Arnold, London

    Google Scholar 

  • Jones HD (1983) Circulatory systems of gastropods and bivalves. In: Saleuddin ASM, Wilbur MW (eds) The Mollusca, vol 5, Physiology, Part 2. Academic, London, pp 189–238

    Google Scholar 

  • Jones JH (1998) Symmorphosis and the mammalian respiratory system: what is optimal design and does it exist? In: Wiebel ER, Taylor CR, Bolis L (eds) Principles of animal design. Cambridge University Press, Cambridge, pp 241–248

    Google Scholar 

  • Jones DR, Johansen K (1972) The blood vascular system of birds. In: Farner DS, King JR (eds) Avian biology, vol II. Academic, New York, pp 157–285

    Google Scholar 

  • Jones AM, Poole DC (2005) Oxygen: uptake kinetics in sport, exercide and medicine. Routledge-Taylor and Francis, New York

    Google Scholar 

  • Jones AW, Radnor CJP (1972a) The development of the chick tertiary bronchus. I. General development and the mode of production of the osmiophilic inclusion body. J Anat 113:303–324

    PubMed  CAS  Google Scholar 

  • Jones AW, Radnor CJP (1972b) The development of the chick tertiary bronchus. II. The origin of the surface lining system. J Anat 113:325–340

    PubMed  CAS  Google Scholar 

  • Jones DR, Randall DJ (1978) The respiratory and circulatory systems during exercise. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 7. Academic, New York, pp 425–501

    Google Scholar 

  • Jones JH, Effman EL, Schmidt-Nielsen K (1985) Lung volume changes during respiration in ducks. Respir Physion 59:15–25

    CAS  Google Scholar 

  • Jonz MG, Nurse CA (2003) Neuroepithelial cells associated innervation of the zebrafish gill: a confocal immunofluorescence study. J Comp Neurol 461:1–17

    PubMed  Google Scholar 

  • Jonz MG, Nurse CA (2005) Development of oxygen-sensing in the gills of zebrafish. J Exp Biol 208:1537–1549

    PubMed  Google Scholar 

  • Jonz MG, Nurse CA (2006) Ontogenesis of oxygen chemoreception in aquatic vertebrates. Respir Physiol Neurobiol 154:139–152

    PubMed  CAS  Google Scholar 

  • Jonz MG, Fearon IM, Nurse CA (2004) Neuroepithelial oxygen chemoreceptors of the zebrafish gill. J Physiol (London) 560:737–752

    CAS  Google Scholar 

  • Jørgensen CB (2000) Amphibiam respiration and olfaction and their relationships: from Robert Townson (1794) to the present. Biol Rev 75:297–345

    PubMed  Google Scholar 

  • Jounieaux V, Mayeux I (1995) Oxygen cost of breathing in patients with emphysema or chronic bronchitis in acute respiratory failures. Am J Respir Crit Care Med 152:2181–2184

    PubMed  CAS  Google Scholar 

  • Jourd’heuil D, Kang D, Grisham MB (1997) Interactions between superoxide and nitric oxide: implications in DNA damage and mutagenesis. Front Biosci 2:189–196

    Google Scholar 

  • Jouve-Duhamel A, Truchot JP (1983) Ventilation in the shore crab Carcinus maenas (L) as a function of ambient oxygen and carbon dioxide field and laboratory studies. J Exp Mar Biol Ecol 70:281–296

    Google Scholar 

  • Jung A, Allen L, Nyengaard JR, Gundersen HJG, Richter J et al (2005) Design-based stereological analysis of the lung parenchymal atchitecture and alveolar type-II cells in surfactant protein A and D double deficient mice. Anat Rec 286:885–890

    Google Scholar 

  • Jürgens KD, Gos G (2002) Phylogeny of gas exchange systems. Anaethesiol Intensivemed Notfallmed Schmerzther 37:185–198

    Google Scholar 

  • Jürss K, Bastrop R (1995) The function of mitochondria-rich cells (chloride cells) in teleost gills. Rev Fish Biol Fish 5:235–255

    Google Scholar 

  • Kaarteenaho-Wiik R, Kinnula V, Herva R, Pääkkö P, Pöllänen R, Soini Y (2001) Distribution and mRNA expression of tenascin-C in developing human lung. Am J Respir Cell Mol Biol 25:341–346

    PubMed  CAS  Google Scholar 

  • Kaczorowski DJ, Zuckerbraun BS (2007) Carbon monoxide: medicinal chemistry and biological effects. Curr Med Chem 14:2720–2725

    PubMed  CAS  Google Scholar 

  • Kaelin WG, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402

    PubMed  CAS  Google Scholar 

  • Kaestner A (1929) Bau und Funktion der Fächertracheen einiger Spinnen. Z Morph Ökol Tiere 13:463–558

    Google Scholar 

  • Kaiser A, Klok CJ, Socha JJ, Lee WK, Quinlan MC, Harrison JF (2007) Increase in tracheal investment with beetle size supports hypothesis of oxygen limitation on insect gigantism. Proc Natl Acad Sci USA 104:13198–13203

    PubMed  CAS  Google Scholar 

  • Kallio PJPJ, Wilson WJ, O’Brien S, Makini Y, Poellinger L (1999) Regulation of the hypoxia-inducible transcription factor-1α by the ubiquitin-proteasome pathway. J Biol Chem 274:6519–6525

    PubMed  CAS  Google Scholar 

  • Kanak R, Fahey PJ (1985) Oxygen cost of breathing: changes dependent upon mode of mechanical ventilation. Chest 87:126–127

    PubMed  CAS  Google Scholar 

  • Kandel ER, Schwatrz JH, Jessell TM (eds) (2000) Principles of neural science, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Kane RJ, Crystal RG (2001) Compartmentalization of vascular endothelial growth factor to the epithelial surface of the lung. Mol Med 7:240–246

    Google Scholar 

  • Kanwisher JW (1966) Tracheal gas dynamics in pupae of the Cecropia silkworm. Biol Bull 130:96–105

    Google Scholar 

  • Kapahi P, Boulton ME, Kirkwood TB (1999) Positive correlation between mammalian lifespan and cellular resisitance to stress. Free Radic Biol Med 26:495–500

    PubMed  CAS  Google Scholar 

  • Kaplan F (2000) Molecular determinants of fetal lung organogenesis. Mol Genet Metab 71:321–341

    PubMed  CAS  Google Scholar 

  • Karas RH, Taylor CR, Jones JH, Linstedt SL, Reeves RB, Weibel ER (1987) Adaptive variation in the respiratory system in relation to energetic demand. VII. Flow of oxygen across the pulmonary gas exchanger. Respir Physiol 69:101–115

    Google Scholar 

  • Kardong KV (1972) Morphology of the respiratory system and its musculature in different snake genera (Part I), Crolalus and Elaphe. Gegenbaurs Morphol Jahrb 117:285–302

    PubMed  CAS  Google Scholar 

  • Karnaky KJ (1986) Structure and function of the chloride cell of Fundulus heteroclitus and other teleosts. Am Zool 26:209–224

    CAS  Google Scholar 

  • Kasting JF (1987) Theoretical constraints of oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Res 34:205–229

    PubMed  CAS  Google Scholar 

  • Kasting JF (2006) Ups and downs of ancient oxygen. Nature (London) 443:643–644

    CAS  Google Scholar 

  • Kasting JF (2010) Early Earth: faint young sun redux. Nature (London) 464:687–689

    CAS  Google Scholar 

  • Kasting JF, Ono S (2006) Paleoclimates: the first two billion years. Phil Trans R Soc Lond B Biol Sci 361:917–929

    CAS  Google Scholar 

  • Kasting JF, Walker JCG (1981) Limits on oxygen concentration in prebiological atmosphere and the rate of abiotic fixation of nitrogen. J Geophys Res 86:1147–1158

    CAS  Google Scholar 

  • Kasting JF, Liu SC, Donahue TM (1979) Oxygen levels in the prebiological atmosphere. J Geophys Res 84:3097–3107

    CAS  Google Scholar 

  • Katsardis CV, Desmond KJ, Ciates AL (1986) Measuring the oxygen cost of breathing in normal adults and patients with cystic fibrosis. Respir Physiol 65:257–266

    PubMed  CAS  Google Scholar 

  • Kaufman AJ, Johnston DJ, Farquhar J, Materson AL, Lyons TW et al (2007) Late Archean biospheric oxygenation and atmospheric evolution. Science 317:1900–1903

    PubMed  CAS  Google Scholar 

  • Kawai N, Bloch DB, Filippov G, Rabkina D, Suen HC et al (1995) Constitutive endothelial nitric oxide synthetase gene expression is regulated during lung development. Am J Physiol Lung Cell Mol Physiol 268:L589–L595

    CAS  Google Scholar 

  • Keijer R, Van Tuyl M, Meifers C, Post M, Tibboel D et al (2001) The transcription factor GATA-6 is essential for branching morphogenesis and epithelial cell differentiation during fetal pulmonary development. Development 128:503–511

    Google Scholar 

  • Kelly FJ (1999) Glutathione: in defense of the lung. Food Chem Toxicol 37:963–966

    PubMed  CAS  Google Scholar 

  • Kemp PJ, Peers C, Lewis A, Miller P (2004) Regulation of recombinant human brain tandem P domain K+ channels by hypoxia: a role for O2 in the control of neuronal excitability? J Cell Mol Med 8:38–44

    PubMed  CAS  Google Scholar 

  • Kennedy B (1979) Blood circulation in polychaete gills. Am Zool 19:868

    Google Scholar 

  • Kennedy MJ, Reader SL, Swierczynki LM (1994) Preservation records of micro-organisms: evidence of the tenacity of life. Microbiology 140:25132529

    Google Scholar 

  • Kennerly TE (1964) Microenvironmental conditions of the pocket gopher burrow. Texas J Sci 16:395–441

    Google Scholar 

  • Kennett JP (1977) Cenozoic evolution of Antarctic glaciation, the circum-Anatarctic Ocean, and their impact on global paleoceanography. J Geophys Res 82:3843–3860

    CAS  Google Scholar 

  • Kerwin JF, Lancaster JR, Feldman PL (1995) Nitric oxide: a new paradigm for second messengers. J Med Chem 38:4343–4362

    PubMed  CAS  Google Scholar 

  • Kessler DS, Melton DA (1994) Vertebrate embryonic induction: mesodermal and neural patterning. Science 266:595–604

    Google Scholar 

  • Khan AU, Wilson T (1995) Reactive oxygen species as second messangers. Chem Biol 2:437–445

    PubMed  CAS  Google Scholar 

  • Kharitonov SA, Barnes PJ (2002) Biomakers of some pulmonary diseases in exhaled breath. Biomakers 7:1–32

    CAS  Google Scholar 

  • Kharitonov SA, O’Connor BJ, Evans DJ, Barnes PJ (1995a) Allergen-induced late asthmatic reactions are associated with elevation of exhaled nitric oxide. Am J Respir Crit Care Med 151:1894–1899

    PubMed  CAS  Google Scholar 

  • Kharitonov VA, Sharma VS, Pilz RB, Magde D, Koesling D (1995b) Basis of guanylate cyclase activation by carbon monoxide. Proc Natl Acad Sci USA 92:2568–2571

    PubMed  CAS  Google Scholar 

  • Kiama SG, Cochand L, Karlsson LM, Nicod LP, Gehr P (2001) Evaluation of phagocytic activity in human monocyte-derived dendritic cells. J Aerosol Med 14:289–299

    PubMed  CAS  Google Scholar 

  • Kiama SG, Dreher D, Cochand L, Kok M, Obregon C et al (2006) Host cell responces of Salmonella typhimurium infected human dendritic cells. Immunol Cell Biol 84:475–481

    PubMed  CAS  Google Scholar 

  • Kiama SK, Adekunle JS, Maina JN (2008) Comparative in vitro study of interactions between particles and respiratory surface macrophages, erythrocytes and epithelial cells of the chicken and the rat. J Anat 213:452–463

    PubMed  CAS  Google Scholar 

  • Kilburn H (1968) A hypothesis for pulmonary clearance and its implications. Am Rev Respir Dis 98:449–463

    PubMed  CAS  Google Scholar 

  • Kim HP, Rayter SW, Choi AM (2006) CO as a cellular signaling molecule. Annu Rev Pharmacol Toxicol 46:411–449

    PubMed  CAS  Google Scholar 

  • Kimura S, Hara Y, Pineau T, Fernadez-Salguero P, Fox CH et al (1996) The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid gland, lung, ventral forebrain, and pituitary. Genes Dev 10:60–69

    PubMed  CAS  Google Scholar 

  • Kimura Y, Suzuki T, Kaneko C, Darnel AD, Moriya T et al (2002) Retinoid receptors in the developing human lung. Clin Sci 103:613–621

    PubMed  CAS  Google Scholar 

  • Kimura H, Weisz A, Kurashima Y, Hashimoto K, Ogura T et al (2006) Hypoxis response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood 95:189–197

    Google Scholar 

  • King AS (1966) Structural and functional aspects of the avian lung and its air sacs. Intern Rev Gen Exp Zool 2:171–267

    Google Scholar 

  • Kingsolver JG, Huey RB (1998) Evolutionary analysis of morphological and physiological plasticity in thermally variable environments. Am Zool 38:545–561

    Google Scholar 

  • Kinney JL, White FN (1977) Oxidative ventilation in a turtle, Pseudemys floridana. Respir Physiol 31:327–332

    PubMed  CAS  Google Scholar 

  • Kirkton SD (2007) Effects of insect body size on tracheal structure and function. Adv Exp Med Biol 618:221–228

    PubMed  Google Scholar 

  • Kirschfeld U (1970) Eine Bauplananalyse der Waranlunge. Zool Beit NF 16:401–440

    Google Scholar 

  • Kirschner LB (1993) The energetics of osmotic regulation in ureotelic and hypoosmotic fishes. J Exp Zool 267:19–26

    CAS  Google Scholar 

  • Kishore U, Greenhough TJ, Waters P, Shrive AK, Ghai R et al (2006) Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol Immunol 43:1293–1315

    PubMed  CAS  Google Scholar 

  • Kitamuro T, Takahashi K, Okawa K, Udono-Fujimori R, Takeda K et al (2003) Bach 1 functions as a hypoxia inducible repressor for the heme oxygenase-1 gene in human cells. J Biol Chem 278:9125–9133

    PubMed  CAS  Google Scholar 

  • Klagsbrun M (1989) The fibroblast growth factor family: structural and biological properties. Prog Growth Factor Res 1:207–235

    PubMed  CAS  Google Scholar 

  • Klämbt C, Glazer L, Shilo BZ (1992) Breathless, a Drosophila FGF receptor homolog, is essential for migration of tracheal and specific midline flial cells. Genes Dev 6:1668–1678

    PubMed  Google Scholar 

  • Klaus M, Reiss OK, Tooley WH, Piel C, Clements JA (1962) Alveolar epithelial cell mitochondria as source of the surface-active lung lining. Science 137:750–751

    PubMed  CAS  Google Scholar 

  • Klaver CJJ (1981) Lung morphology in the chameleonidae (Sauria) and its bearing upon phylogeny, systematics and zoogeography. Z Zool Syst Evolutionsforsch 19:36–58

    Google Scholar 

  • Kleiber M (1965) Respiratory exchange and metabolic rate. In: Fenn WO, Rahn H (eds) Handbook of physiology, Section 3 Respiration, vol II. American Physiological Society, Washington DC, pp 927–938

    Google Scholar 

  • Klein W, Owerkowicz T (2004) Function of intracoelomic septa in lung ventilation of amniotes: lessens from lizards. Physiol Biochem Zool 79:1019–1032

    Google Scholar 

  • Klemm RD, Gatz RN, Westfall JA, Fedde MR (1979) Microanatomy of the lung parenchyma of the tegu lizard Tupinambis nigropunctus. J Morphol 161:257–280

    Google Scholar 

  • Klenz RD, Fedde MR (1978) Hydrogen sulfide: effects on avian respiratory control and intrapulmonary CO2 receptors. Respir Physiol 32:355–367

    Google Scholar 

  • Klika E, Lelek A (1967) A contribution to the study of the lungs of Protopterus annectens and Polypterus segegalensis. Folia Morphol 15:168–175

    CAS  Google Scholar 

  • Klok CJ, Harrison JF (2009) Atmospheric hypoxia limits selection for large size in insects. PLoS One 4: www.plosone.org, e3876

  • Knight J, Knight R (1986) The blood vascular system of the gills of Pholas dactylus L. (Mollusca, Bivalvia, Eulamellibranchia). Phil Trans R Soc Lond B Biol Sci 313:509–523

    Google Scholar 

  • Knoll AH (1979) Archean photoautotrophy: some alternatives and limits. Orig Life 9:313–327

    PubMed  CAS  Google Scholar 

  • Knoll AH (1996) Breathing room for early animals. Nature (London) 382:111–112

    CAS  Google Scholar 

  • Knoll AH (2004) Life on a young planet: the first three billion years of evolution on Earth. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Knowles RG, Merrett M, Salter M, Moncada S (1990) Differential induction of brain, lung and liver nitric oxide synthetase by endotoxin in rat. Biochem J 270:833–836

    PubMed  CAS  Google Scholar 

  • Knust J, Ochs M, Gundersen JG, Nyengaard JR (2009) Stereological estimates of alveolar number and size and capillary length and surface area in mice lungs. Anat Rec 292:113–122

    Google Scholar 

  • Kobayashi M, Fujiki M, Suzuki T (1988) Variation in and oxygen binding properties of Daphnia magna hemoglobin. Physiol Zool 61:415–419

    CAS  Google Scholar 

  • Kobzik L, Bredt DS, Lowenstein CJ, Drazen J, Gaston B et al (1993) Nitric oxide synthetase in human and rat lung: immunocytochemical and histochemical localization. Am J Respir Cell Mol Biol 9:371–377

    PubMed  CAS  Google Scholar 

  • Koch H (1938) The absorption of chloride ions by the anal papillae of diptera larvae. J Exp Biol 15:152–160

    CAS  Google Scholar 

  • Koetzler R, Saifeddine M, Yu Z, Schürch S, Hollenberg MD, Green FHY (2006) Surfactant as an airway smooth muscle relaxant. Am J Respir Cell Mol Biol 34:609–615

    PubMed  CAS  Google Scholar 

  • Kong Y, Glickman J, Subramaniam M, Shahsafaei A, Allameni KP et al (2004) Functional diversity of notch family genes in fetal lung development. Am J Physiol Lung Cell Mol Physiol 286:L1075–L1083

    PubMed  CAS  Google Scholar 

  • Kong Y, Westerman KA, Faigle M, Eltzschig HK, Colgan SP (2006) HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J 20:2242–2250

    PubMed  CAS  Google Scholar 

  • Konhauser K (2009) Biochemistry: deepening the early oxygen debate. Nat Geosci 2:241–242

    CAS  Google Scholar 

  • Koshiji M, Kegeyama Y, Pete EA, Horikawa I, Barrett JC, Huang LE (2004) HIF-1α induces cell cycle arrest by functionally counteracting Myc. EMBO J 23:1949–1956

    PubMed  CAS  Google Scholar 

  • Koteja P (2004) The evolution of concepts on the evolution of endothermy in birds and mammals. Physiol Biochem Zool 77:1043–1050

    PubMed  Google Scholar 

  • Kourembanas S (2002) Hypoxia and carbon monoxide in the vasculature. Antioxid Redox Signal 4:291–299

    PubMed  CAS  Google Scholar 

  • Koutsourakis M, Langeveld A, Patient R, Beddington R, Grosveld F (1999) The transcription factor GATA-6 is essential for early extraembryonic development. Development 126:723–732

    CAS  Google Scholar 

  • Kovacic P, Jacintho JD (2001) Mechanisms of carcinogenesis: focus on oxidative stress and electron transfer. Curr Med Chem 8:773–796

    PubMed  CAS  Google Scholar 

  • Kramer DL (1987) Dissolved oxygen and fish behaviour. Environ Biol Fish 18:19–92

    Google Scholar 

  • Kreuzer F (1970) Facilitated diffusion of oxygen and its possible significance: a review. Respir Physiol 9:1–30

    PubMed  CAS  Google Scholar 

  • Krogh A (1913) On the composition of the air in the tracheal system of some insects. Skand Arch Physiol 29:29–36

    Google Scholar 

  • Krogh A (1920a) Studien über Tracheen Respiration. II. Ueber Gasdiffusion in der Tracheen. Pflugers Arch 179:95–112

    CAS  Google Scholar 

  • Krogh A (1920b) Studien über Tracheen Respiration. III. Die Kombination von mechanischer Ventilation mit Gasdiffusion nach Versuchen an Dytiscuslarven. Pflugers Arch Ges Physiol Menschen Tiere 179:113–120

    CAS  Google Scholar 

  • Krogh A (1941) The comparative physiology of respiratory mechanisms. University of Pennsylvania Press, Philadelphia, PA

    Google Scholar 

  • Ku HH, Sohal RS (1993) Comparison of mitochondrial pro-oxidant generation and anti-oxidant defenses between rat and pigeon: possible basis of variation in longevity and metabolic potential. Mech Ageing Dev 72:67–76

    PubMed  CAS  Google Scholar 

  • Kuehne B, Junqueira LC (2000) Histology of the trachea and lung of Siphonops annulatus (Amphibia, Gymnophiona). Rev Brasil Biol 60:167–172

    PubMed  CAS  Google Scholar 

  • Kukalova-Peck J (1985) Ephemeroid wing venation based upon new gigantic Carboniferous mayflies and basic morphology, phylogeny, and metamorphosis of pterygote insects (Insecta, Ephemerida). Can J Zool 63:933–955

    Google Scholar 

  • Kumar VH, Lakshminrusimha S, El Abiad MT, Chess PR, Ryan RM (2005) Growth factors in lung development. Adv Clin Chem 40:261–316

    PubMed  CAS  Google Scholar 

  • Kumar H, Tawhai MH, Hoffman EA, Lin CL (2009) The effects of geometry on airflow in the acinar region of the human lung. J Biomech 42:1635–1642

    PubMed  Google Scholar 

  • Kuo TBJ, Yuan ZF, Lin SL, Lin Y-N, Li W-S et al (2011) Reactive oxygen species are the cause of the enhances cardiorespiratory response induced by intermittent hypoxia in conscious rats. Respir Physiol Neurobiol 175:70–79

    PubMed  Google Scholar 

  • Kuroiwa T, Nishida K, Yoshida Y, Fujiwara T, Mori T et al (2006) Structure, function and evolution of the mitochondrial division apparatus. Biochim Biophys Acta 1763:510–521

    PubMed  CAS  Google Scholar 

  • Kuroki Y, Takahashi M, Nishitani C (2007) Pulmonary collectins in innate immunity of the lung. Cell Microbiol 9:1871–1879

    PubMed  CAS  Google Scholar 

  • Kurz H (2000) Physiology of angiogenesis. J Neurooncol 50:17–35

    PubMed  CAS  Google Scholar 

  • Kusche K, Burmester T (2001) Diplopod hemocyanin sequence and the phylogenetic position of the Myriapoda. Mol Biol Evol 18:1566–1573

    PubMed  CAS  Google Scholar 

  • Kusche K, Ruhberg H, Burmester T (2002) A hemocyanin from the Onychophora and the emergence of respiratory proteins. Proc Natl Acad Sci USA 99:10545–10548

    PubMed  CAS  Google Scholar 

  • Kusche K, Hembach A, Hagner-Holler S, Gebauer W, Burmester T (2003) Complete subunit sequences, structure and evolution of the 6 x 6-mer hemocyanin from the common house centipede, Scutigera coleoptrata. Eur J Biochem 270:2860–2868

    PubMed  CAS  Google Scholar 

  • Kwast KE, Hand SC (1996) Acute depression of mitochondrial protein synthesis during hypoxia. Contributions of oxygen sensing, matrix acidification, and redox state. J Biol Chem 271:7313–7319

    PubMed  CAS  Google Scholar 

  • Kylstra JA (1962) Drowning: the role of salts in the drowning fluid. Acta Physiol Pharmacol Neerl 10:327–334

    PubMed  CAS  Google Scholar 

  • Kylstra JA, Paganelli CV, Lanphier EH (1966) Pulmonary gas exchange in dogs ventilated with hyperbarically oxygenated liquid. J Appl Physiol 21:177–184

    PubMed  CAS  Google Scholar 

  • LaBarbera M (1990) Principles of design of fluid transport systems in zoology. Science 249:992

    PubMed  CAS  Google Scholar 

  • Lahiri S (1975) Blood oxygen affinity and alveolar ventilation in relation to body weight in mammals. Am J Physiol 229:529–536

    PubMed  CAS  Google Scholar 

  • Lahiri S, Roy A, Baby SM, Hoshi T, Semenza GL, Prabhakar NR (2006) Oxygen sensing in the body. Prog Biophys Mol Biol 91:249–286

    PubMed  CAS  Google Scholar 

  • Laitman JT, Reidenberg JS, Marquez S, Gannon PJ (1996) What the nose knows: new understandings of Neanderthal upper respiratory tract specializations. Proc Natl Acad Sci USA 93:10543–11045

    PubMed  CAS  Google Scholar 

  • Lako M, Stracha T, Bullen P, Wilson DI, Robson SC, Lindsay S (1998) Isolation, characterization and embryonic expression of Wnt-11, a gene which maps to 11g13.5 and has possible roles the development of skeleton, kidney and lung. Gene 219:101–110

    PubMed  CAS  Google Scholar 

  • Lallier F, Truchot JP (1989) Hemolymph oxygen transport during environmental hypoxia in the shore crab, Carcinus maenas. Respir Physiol 77:323–336

    PubMed  CAS  Google Scholar 

  • Lambertsen CJ (1961) Respiration. In: Bard P (ed) Medical physiology. Mosby, St Louis, MO

    Google Scholar 

  • Lamy J, Truchot JP, Giles R (eds) (1985) Respiratory pigments in animals. Springer, Berlin

    Google Scholar 

  • Landis GP, Snee LW (1991) 40Ar/39r systematics and argon diffusion in amber: implictions for ancient earth atmosphere. Paleogeogr Paleoclimatol Paleoecol 97:63–67

    Google Scholar 

  • Lane N (2002) Oxygen: the molecule that made the World. Oxford University Press, Oxford

    Google Scholar 

  • Lane N, Martin W (2010) The energetics of genome complexity. Nature (London) 467:929–934

    CAS  Google Scholar 

  • Langille BL, Jones DR (1975) Central cardiovascular dynamics of ducks. Am J Physiol 228:1856–1861

    PubMed  CAS  Google Scholar 

  • Larrivée B, Karston A (2000) Signaling pathways induced by vascular endothelial growth factor. Int J Mol Med 5:447–545

    PubMed  Google Scholar 

  • Lasiewski RC (1972) Respiratory function in birds. In: Farner DS, King JR (eds) Avian biology, vol II. Academic, London, pp 288–335

    Google Scholar 

  • Lau MJ, Keough KMW (1981) Lipid composition of lung and lung lavage fluid from map turtles maintained at different environmental temperatures. Can J Biochem 59:208–219

    PubMed  CAS  Google Scholar 

  • Laurent P (1982) Structure of vertebrate gills. In: Houlihan DF, Rankin JC, Shuttleworth TJ (eds) Gills. Cambridge University Press, Cambridge, pp 25–43

    Google Scholar 

  • Laurent P (1984) Gill internal morphology. In: Hoar WS, Randall DJ (eds) Fish physiology. Academic, Orlando, FL, pp 73–183

    Google Scholar 

  • Laurent P, Dunel S (1980) Morphology of gill epithelia in fish. Am J Physiol Regul Integr Comp Physiol 238:R147–R159

    CAS  Google Scholar 

  • Laurent P, Delaney RG, Fishman AP (1978) The vasculature of the gills in the aquatic and aestivating lungfish (Protopterus aethiopicus). J Morphol 156:173–208

    Google Scholar 

  • Laurent P, Goss GG, Perry SF (1994) Proton pumps in fish gill pavement cells. Arch Physiol Biochem 102:77–79

    CAS  Google Scholar 

  • Laurent P, Maina JN, Bergman HL, Narahara A, Walsh PJ, Wood CM (1995) Gill structure of a fish from an alkaline lake: effect of short-term exposure to neutral conditions. Can J Zool 73:1170–1181

    Google Scholar 

  • Laverack MS (1963) The physiology of earthworms. Pergamon, Oxford

    Google Scholar 

  • LaVerne AA, DiMaio D, Fernandez AJ (1973) Occupational, accidental, explorational carbon dioxide inhalation poisonings and prevention. PDM 4–5:83–94

    Google Scholar 

  • Lavista-Llanos S, Centanin L, Irisarri M, Russo DM, Gleadle JM et al (2002) Control of the hypoxic response in Drosophila melanogaster by the Basic Helix Loop-Helix PAS protein similar. Mol Cell Biol 22:6842–6853

    PubMed  CAS  Google Scholar 

  • Law SHW, Wu RSS, Ng PKS, Yu RMK, Kong RYC (2006) Cloning and expression anlysis of two distinct HIF-1α isoforms – gcHIF1α and gcHIF-4α – from the hypoxia-tolerant grass carp. Ctenopharngodon idellus. BMC Mol Biol 7:15

    PubMed  Google Scholar 

  • Laybourne RC (1974) Collision between a vulture and an aircraft at an altitude of 37,000 ft. Wilson Bull 86:461–462

    Google Scholar 

  • Lazzaro D, Price M, de Felice M, Di Lauro R (1991) The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development 113:1093–1104

    PubMed  CAS  Google Scholar 

  • Le ACN, Musil L (2001) FGF signaling in chick lens development. Development 233:394–411

    CAS  Google Scholar 

  • Lebeche D, Malpel S, Cardoso WV (1999) Fibroblast growth factor interactions in the developing lung. Mech Dev 86:125–136

    PubMed  CAS  Google Scholar 

  • Leblond CP, Inoue S (1989) Structure, composistion, and assembly of basement membrane. Am J Anat 185:367–390

    PubMed  CAS  Google Scholar 

  • Lee JJ (2006) Algal symbiosis in larger foraminifera. Symbiosis 42:63–75

    Google Scholar 

  • Lee KH, Rico P, Boujoukos AJ, Keenan RJ, Pinsky MR (1995) Measurement of lung oxygen consumption in a patient after double-lung transplant. J Thorac Cardiovasc Surg 110:1764–1765

    PubMed  CAS  Google Scholar 

  • Lee PJ, Alam J, Wiegand GW, Choi AMK (1996) Overexpression of heme oxygenase-1 in human pulmonary epithelial cells results in cell growh arrest and increased resistance to hyperoxia. Proc Natl Acad Sci USA 93:10393–10398

    PubMed  CAS  Google Scholar 

  • Lee PJ, Jiang BH, Chin BY, Iyer NV, Alam J et al (1997) Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem 271:5375–5381

    Google Scholar 

  • Lefer DJ (2007) A new gaseous signaling molecule emerges: cardioprotective role of hydrogen sulfide. Proc Natl Acad Sci USA 104:17907–17908

    PubMed  CAS  Google Scholar 

  • Leguen I, Craved JP, Pisam M, Prunet P (2001) Biological functions of trout pavement-like gill cells in primary culture on solid support: pHi regulation, cell volume regulation and xenobiotic biotransformation. Comp Biochem Physiol 128:207–222

    CAS  Google Scholar 

  • Leith DE, Mead J (1966) Maximum expiratory flow in liquid filled lungs. Fed Proc 25:506

    Google Scholar 

  • Lenfant C, Johansen K (1967) Respiratory adaptations in selected amphibians. Respir Physiol 2:247–260

    PubMed  CAS  Google Scholar 

  • Lenfant C, Johansen K (1968) Respiration in an African lungfish, Protopterus aethiopicus: respiratory properties of blood and normal patterns of breathing and gas exchange. J Exp Biol 49:437–452

    PubMed  CAS  Google Scholar 

  • Lenfant C, Johansen K (1972) Gas exchange in gill, skin and lung breathing. Respir Physiol 14:211–218

    PubMed  CAS  Google Scholar 

  • Leopold LB, Davies KS (1968) Water. Time Life Books, Amsterdam

    Google Scholar 

  • Lessard J, Val AL, Aota S, Randall DJ (1995) Why is there no carbonic anhydrase activity available to fish plama? J Exp Biol 1995:31–38

    Google Scholar 

  • Levy SE, Harvey E (1974) Effect of tissue slicing on rat lung metabolism. J Appl Physiol 37:239–240

    PubMed  CAS  Google Scholar 

  • Levy MN, Stanton BA, Koeppen BM (2006) Berne and levy principles of physiology, 4th edn. Elsevier, Philadelphia, PA

    Google Scholar 

  • Lewis JP, Veldhuizen R (2003) The role of exogenous surfactant in the treatment of acute lung injury. Annu Rev Physiol 65:613–642

    PubMed  CAS  Google Scholar 

  • Li J (2005) Processing, stability and interactions of lung surfactant protein C. Karolinska University Press, Stockholm

    Google Scholar 

  • Li XJ, Zhang LM, Gu J, Zhang AZ, Sun FY (1997) Melatonin decreases production of hydroxyl radical during cerebral ischemia-reperfusion. Acta Pharmacol Sin 18:394–396

    CAS  Google Scholar 

  • Li C, Xiao J, Hormi K, Borok Z, Minoo P (2002) Wnt-5a participates in distal lung morphogenesis. Dev Biol 248:68–81

    PubMed  CAS  Google Scholar 

  • Li X, Du J, Jin H, Tang X, Bu D, Tang C (2007) The regulatory effect of endogenous hydrogen sulfide on pulmonary vascular structure and gasotransmitters in rats with high pulmonary blood flow. Life Sci 16:841–849

    Google Scholar 

  • Li X, Bazer FW, Gao H, Jobgen W, Johnson GA et al (2009a) Amino acid and gaseous signaling. Amino Acids 37:65–78

    Google Scholar 

  • Li X, Jin H, Bin G, Wang L, Tang C, Du J (2009b) Endogenous hydrogen sulfide regulates pulmonary artery collagen remodeling in rats with high pulmonary blood flow. Exp Biol Med 234:504–512

    CAS  Google Scholar 

  • Lide DR (ed) (1990) CRC handbook of chemistry and physics, 70th edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Lieb B, Dimitrova K, Kang HS, Braun S, Gebauer W et al (2006) Red blood with blue-blood.ancestry: intriguing structure of a snail hemoglobin. Proc Natl Acad Sci USA 103:12011–12016

    PubMed  CAS  Google Scholar 

  • Lieb B, Gebauer W, Gatsogiannis C, Depoix F, Hellmann N et al (2010) Molluscan mega-hemocyanin: an ancient oxygen carrier tuned by a ≈550 kDa polypeptide. Front Zool 7:14. doi:10.1186/1742-9994-7-14

    PubMed  Google Scholar 

  • Liem KF (1961) Tetrapod parallelisms and other features in the functional morphology of the blood vascular system of Fluta alba Zuiew (Pisces: Teleostei). J Morphol 108:131–143

    PubMed  CAS  Google Scholar 

  • Liem KF (1987a) Form and function of lungs: the evolution of air-breathing mechanisms. Am Zool 28:739–759

    Google Scholar 

  • Liem KF (1987b) Functional design of the air ventilation apparatus and overland excursions by teleosts. Fieldiana Zool New Ser 37:1–29

    Google Scholar 

  • Liem KF (1989) Respiratory gas bladders in teleosts: functional conservatism and morphological diversity. Am Zool 29:333–352

    Google Scholar 

  • Liem KF (1991) Towards a new morphology: pluralism in research and education. Am Zool 31:759–767

    Google Scholar 

  • Light RB (1988) Intrapulmonary oxygen consumption in experimental pneumococcal pneumonia. J Appl Physiol 64:290–2495

    Google Scholar 

  • Lighton JRB (1996) Discontinuous gas exchange in insects. Annu Rev Entomol 41:309–324

    PubMed  CAS  Google Scholar 

  • Lighton JRB (2007) Respiratory biology: why insects evolved discontinuous gas exchange. Curr Biol 17:R645–R647

    PubMed  CAS  Google Scholar 

  • Lin Y-J, Markham NE, Balasubramaniam V, Tang J-R, Maxey A, Kinsella JP, Abman SH (2005) Inhaled nitric oxide enhances distal lung growth after exposure to hyperoxia in neonatal rats. Pediatr Res 58:222–229

    Google Scholar 

  • Lindahl P, Karlsson L, Hellstrom M, Gebre-Medhin S, Willets K et al (1997) Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Development 124:3943–3953

    PubMed  CAS  Google Scholar 

  • Lindroth A (1939) Beobachtungen an capitelliden, besonders hinsichtlich ihrer respiration. Zool Anz 127:285–297

    CAS  Google Scholar 

  • Lindstedt SL (1984) Pulmonary transit time and diffusing capacity in mammals. Am J Physiol 246:R384–R388

    PubMed  CAS  Google Scholar 

  • Lippmann M, Schlesinger RB (1984) Interspecies comparison of particle deposition and mucociliary clearance in tracheobronchial airways. J Toxicol Environ Health 13:441–469

    PubMed  CAS  Google Scholar 

  • Lipton A, Johnson M, MacDonald T, Lieberman M, Gozal D, Gaston B (2001) S-nitrosothiols signal the ventilatory response to hypoxia. Nature (London) 413:171–174

    CAS  Google Scholar 

  • Lissauer JJ, Stevenson DJ (2006) Formation of giant planets. NASA Ames Research Center, CalTech, http://www.astromo.unam.mx/esp/PPV/7%20%20PLANET%20FORMATION.%20AND%20EXTRASOLAR%20PLANETS/sec7-1.pdf

  • Litingtung Y, Lei L, Westphal H, Chiang C (1998) Sonic hedgehog is essential to foregut development. Nat Genet 20:58–61

    PubMed  CAS  Google Scholar 

  • Little C (1990) The terrestrial invasion: an ecophysiological approach to the origins of land animals. Cambridge University Press, Cambridge

    Google Scholar 

  • Liu J, Tseu I, Wang J, Tanswell K, Post M (2000) Transforming growth factor beta-2, but not beta-1 and beta-3, is critical for early rat lung branching. Dev Dyn 180:242–257

    Google Scholar 

  • Liu Z, Xu J, Colvin JS, Ornitz DM (2002) Coordination of chondrogenesis and osteogenesis by fibroblast growth factor-18. Genes Dev 16:859–869

    PubMed  CAS  Google Scholar 

  • Liu C, Ikegami M, Stahlman MT, Dey CR, Whitsett JA (2003) Inhibition of alveolarization and altered pulmonary mechanics in mice expressing GATA-6. Am J Physiol Lung Cell Mol Physiol 285:1246–1254

    Google Scholar 

  • Livermore RA, Smith AG, Briden JC (1985) Palaeomagnetic constraints on the distribution of continents in the rate Silurian and early Devonian. Phil Trans R Soc Lond B Biol Sci 309:29–56

    Google Scholar 

  • Livermore RA, Eagles G, Morris P (2005) Paleogene opening of Drake Passage. Earth Planet Sci Lett 236:459–470

    CAS  Google Scholar 

  • Locke MJ (1958a) The structure of insect tracheae. Q J Microsc Sci 98:487–492

    Google Scholar 

  • Locke MJ (1958b) The co-ordination of growth in the tracheal system of insects. Q J Microsc Sci 99:373–391

    Google Scholar 

  • Locke MJ (1958c) The formation of trachea and tracheoles in Rhodinius prolixus. Q J Microsc Sci 99:29–46

    Google Scholar 

  • Lockley RM (1970) The most aerial bird in the world. Animals 13:4–7

    Google Scholar 

  • Lockwood APM (1968) Aspects of physiology of Crustacea. Oliver Boyd, Edinburgh

    Google Scholar 

  • Loer SA, Scheeren TW, Tarnow J (1997) How much oxygen does the human lung consume? Anesthesiology 86:532–537

    PubMed  CAS  Google Scholar 

  • Lomholt JP, Johansen K, Maloiy GMO (1975) Is aestivating lungfish the first vertebrate with sunctional breathing? Nature (London) 257:787–788

    Google Scholar 

  • Long JA (1995) The rise of fishes: 500 million years of evolution. Johns Hopkins University Press, Baltimore, MA

    Google Scholar 

  • Long JA, Gordon MS (2004) The greatest step in vertebrate history: a paleobiologica review of the fish-tetrapod transition. Physiol Biochem Zool 77:700–719

    PubMed  Google Scholar 

  • Longmuir IS (1976) Search for new tissue oxygen carriers. In: oxygen and physiological function. Professional Information Library, Dallas, pp 213–254

    Google Scholar 

  • Longmuir IS, Bourke A (1960) The measurement of the diffusion of oxygen through respiring tissue. Biochem J 76:225–229

    PubMed  CAS  Google Scholar 

  • Longoni B, Salgo MC, Pryor WA, Marchiafava PL (1998) Effects of melatonin on lipid peroxidation induced by oxygen radicals. Life Sci 62:853–859

    PubMed  CAS  Google Scholar 

  • López-Barneo J, Pardal R, Ortega-Sáenz P (2001) Cellular mechanisms of oxygen sensing. Annu Rev Physiol 63:259–287

    PubMed  Google Scholar 

  • Losa GA (2009) The fractal geometry of life. Riv Biol 102:29–59

    PubMed  Google Scholar 

  • Losa GA, Nonnenmacher TF (1996) Self-similarity and fractal irregularity in pathologic tissues. Mod Pathol 9:174–182

    PubMed  CAS  Google Scholar 

  • Loudon C (1989) Tracheal hypertrophy in mealworms: design and plasticity in oxygen supply systems. J Exp Biol 147:217–235

    Google Scholar 

  • Low WP, Ip YK, Lane DJ (1990) A comparative study of the gill morphology of the mudskippers, Periophthalmus chrysospilos, Boleophthalmus boddaerti and Periophthalmus schlosseri. Zool Sci 7:29–38

    Google Scholar 

  • Lowe CA, Tuma RF, Sivieri EM, Shaffer TH (1979) Liquid ventilation: cardiovascular adjustments with secondary hyperlactatemia and acidosis. J Appl Physiol 47:1051–1057

    PubMed  CAS  Google Scholar 

  • Lower S (1998) Biochemical evolution http://www.chem1.com/acad/webtext/geochem/11txt.html

  • Łowicka E, Bełtowski J (2007) Hydrogen sulfide (H2S) – the third gas of interest for pharmacologists. Pharmacol Rep 59:4–24

    PubMed  Google Scholar 

  • Lu P, Werb Z (2008) Patterning mechanisms of branched organs. Science 322:1506–1509

    PubMed  CAS  Google Scholar 

  • Lu H, Li Y, Shu M, Tang J, Huang Y, Zhou Y, Liang Y, Yan G (2009) Hypoxia inducible factor-1 alpha blocks differentiation of malignant gliomas. FEBS J 276:7291–7304

    PubMed  CAS  Google Scholar 

  • Lü J, Izvolsky KI, Qian J, Cardoso WV (2005) Identification and FGF-10 targets in the embryonic lung epithelium during bud morphogenesis. J Biol Chem 280:4834–4841

    PubMed  Google Scholar 

  • Luchtel DL, Kardong KV (1981) Ultrastructure of the lung of the rattlesnake, Crotalus viridis oreganus. J Morph 169:29–47

    Google Scholar 

  • Luckett WP (1976) Ontogeny of amniote fetal membranes and their applications to phylogeny. In: Hecht MK, Goody PC, Hecht BM (eds) The major patterns in vertebrate evolution. Plenum, London, pp 439–516

    Google Scholar 

  • Luft UC (1965) Aviation physiology. In: Fenn WO, Rahn H (eds) Handbook of physiology, sect 3, respiration, vol II. American Physiological Society, Washinton, DC, pp 1099–1147

    Google Scholar 

  • Luis da Cruz A, Pedretti ACE, Fernandes MN (2009) Stereological estimation of the surface area and oxygen diffusing capacity of the respiratory stomach of the air-breathing armoured catfish, Pterygoplichthys anisitsi (Teleosti: Loricariidae). J Morphol 270:601–614

    Google Scholar 

  • Luisi PL (2007) Chemical aspects of synthetic biology. Chem Biodivers 4:603–621

    Google Scholar 

  • Lutcavage ME, Lutz PL, Baier H (1987) Gas exchange in the loggerhead sea turtle, Caretta. J Exp Biol 131:365–372

    Google Scholar 

  • Lutz BR (1930) The effect of low oxygen tension on the pulsations of the isolated holothurian cloaca. Biol Bull 58:74–84

    Google Scholar 

  • Lutz PL, Longmuir IS, Tuttle JV, Schmidt-Nielsen K (1973) Dissociation curve of bird blood and effect of red cell oxygen consumption. Respir Physiol 17:269–275

    PubMed  CAS  Google Scholar 

  • Lutz PL, Longmuir IS, Schmidt-Nielsen K (1974) Oxygen affinity of bird blood. Respir Physiol 20:325–330

    PubMed  CAS  Google Scholar 

  • Lykkeboe G, Johansen K (1975) Functional properties of hemoglobins in the teleost, Tilapia grahami. J Comp Physiol 104:1–11

    CAS  Google Scholar 

  • Lynch RG (2004) Surfactant and RDS in premature infants. FASEB J 18:1624

    PubMed  Google Scholar 

  • Lynch JJ, King JE, Chamberlain TK, Smith AL (1947) Effects of aquatic weed infestations on the fish and wildlife of the Gulf States. US Dept Int Spec Sci Rept 39:1–71

    Google Scholar 

  • Lyons TW, Gill B (2010) Ancient sulfur cycling and oxygenation of the early biosphere. Elements 6:93–99

    CAS  Google Scholar 

  • Lyons TW, Reinhard CT (2009) An early productive ocean unfit for aerobics. Proc Natl Acad Sci USA 106:18045–18046

    PubMed  CAS  Google Scholar 

  • Macklem P, Bouverot P, Scheid P (1979) Measurement of the distensibility of the parabronchi in duck lungs. Respir Physiol 33:23–35

    Google Scholar 

  • Madan JJ, Wells MJ (1996) Why squid can breathe easy. Nature (London) 380:590

    CAS  Google Scholar 

  • Madhusudhan N, Harrington J, Stevenson KB, Nymeyer S, Campo CJ et al (2011) A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b. Nature (London) 469:64–67

    CAS  Google Scholar 

  • Madsen J, Kliem A, Tornøe I, Skjødt K, Koch C, Holmskov U (2000) Localization of lung surfactant protein D on mucosal surfaces in human tissues. J Immunol 164:5866–5870

    PubMed  CAS  Google Scholar 

  • Maeda Y, Dave V, Whitsett JA (2007) Transcriptional control of lung morphogenesis. Physiol Rev 87:219–244

    PubMed  CAS  Google Scholar 

  • Magnussen H, Willmer H, Scheid P (1976) Gas exchange in the air sacs: contribution to respiratory gas exchange in ducks. Respir Physiol 26:129–146

    PubMed  CAS  Google Scholar 

  • Mailleux AA, Tefft D, Ndiaye D, Ito N, Thiery JP et al (2001) Evidence that SPROUTY2 functions as an inhibitor of mouse embryonic lung growth and morphogenesis. Mech Dev 102:81–94

    PubMed  CAS  Google Scholar 

  • Mailleux AA, Kelly R, Veltmaat JM, Langhe SP, Zaffran S et al (2005) FGF-10 expression identifies parabronchial smooth muscle cell progenitors and is required for their entry into the smooth muscle cell lineage. Development 132:2157–2166

    PubMed  CAS  Google Scholar 

  • Maina JN (1982) A scanning electron microscopic study of the air- and blood capillaries of the lung of the domestic fowl (Gallus domesticus). Experientia 35:614–616

    Google Scholar 

  • Maina JN (1984) Morphometrics of the avian lung 3. The structural design of the passerine lung. Respir Physiol 55:291–309

    PubMed  CAS  Google Scholar 

  • Maina JN (1985) A scanning and transmission electron microscopic study of the bat lung. J Zool (London) 205B:19–27

    Google Scholar 

  • Maina JN (1986) The structural design of the bat lung. Myotis 23:71–77

    Google Scholar 

  • Maina JN (1987) The morphology of the lung of the African lungfish, Protopterus aethiopicus: a scanning electron microscopic study. Cell Tissue Res 250:191–196

    PubMed  CAS  Google Scholar 

  • Maina JN (1988) Scanning electron microscopic study of the spatial organization of the air – and blood conducting components of the avian lung (Gallus gallus domesticus). Anat Rec 222:145–153

    PubMed  CAS  Google Scholar 

  • Maina JN (1989a) Morphometrics of the avian lung. In: King AS, McLelland J (eds) Form and function in birds, vol 4. Academic, London, pp 307–368

    Google Scholar 

  • Maina JN (1989b) The morphology of the lung of a tropical terrestrial slug, Trichotoxon copleyi (Mollusca: Gastropoda; Pulmonata): a scanning and transmission electron microscopic study. J Zool (London) 217:335–366

    Google Scholar 

  • Maina JN (1989c) The morphology of the lung of the East African tree frog Chiromantis petersi with observations on the skin and the buccal cavity as secondary gas exchange organs: a TEM and SEM study. J Anat 165:29–43

    PubMed  CAS  Google Scholar 

  • Maina JN (1989d) The morphology of the lung of the black mamba Dendroaspis polylepis (Reptilia: Ophidia: Elapidae): a scanning and transmission electron microscopic study. J Anat 167:31–46

    PubMed  CAS  Google Scholar 

  • Maina JN (1989e) A scanning and transmission electron microscopic study of the tracheal air-sac system in a grasshopper (Chrotogonus senegalensis, Kraus)- (Orthoptera: Acrididae: Pygomorphinae). Anat Rec 223:393–405

    PubMed  CAS  Google Scholar 

  • Maina JN (1990a) The morphology of the gills of the African freshwater crab Potamon niloticus (Ortmann-Crustacea-Brachyura-Potamonidae): a scanning and transmission electron microscopic study. J Zool (London) 221:499–515

    Google Scholar 

  • Maina JN (1990b) A study of the morphology of the gills of an extreme alkalinity and hyperosmotic adapted teleost Oreochromis alcalicus grahami (Boulenger) with particular emphasis on the ultrastructure of the chloride cells and their modifications with water dilution: a SEM and TEM study. Anat Embryol 181:83–98

    PubMed  CAS  Google Scholar 

  • Maina JN (1991) A morphometric analysis of chloride cells in the gills of the teleosts Oreochromis alcalicus and Oreochromis niloticus and a description of presumptive urea excreting cells in Oreochromis alcalicus. J Anat 175:131–145

    PubMed  CAS  Google Scholar 

  • Maina JN (1994) Comparative pulmonary morphology and morphometry: the functional design of respiratory systems. In: Gilles R (ed) Advances in comparative and environmental physiology, vol 20. Springer, Heidelberg, pp 111–232

    Google Scholar 

  • Maina JN (1998) The gas exchangers: structure, function, and evolution of the respiratory processes. Springer, Heidelberg

    Google Scholar 

  • Maina JN (2000) The highly specialized secretory epithelium in the buccal cavity of the alkalinity adapted Lake Magadi cichlid fish, Oreochromis alcalicus grahami (Teleosti: Cichlidae): a scanning and transmission electron microscopic study. J Zool (London) 251:427–438

    Google Scholar 

  • Maina JN (2002a) Functional morphology of the vertebrate respiratory organs. Oxford and IBH Publishing Company, Lebanon, NH

    Google Scholar 

  • Maina JN (2002b) Some recent advances on the study of the functional design of the avian lung: morphologic and morphometric perspectives. Biol Rev 77:97–152

    PubMed  CAS  Google Scholar 

  • Maina JN (2003a) Developmental dynamics of the bronchial (airway)- and air sac systems of the avian respiratory system from days 3 to 26 of life: a scanning electron microscopic study of the domestic fowl, Gallus gallus variant domesticus. Anat Embryol 207:119–134

    PubMed  CAS  Google Scholar 

  • Maina JN (2003b) A systematic study of the development of the airway (bronchial) system of the avian lung from days 3 to 26 of embryogenesis: a transmission electron microscopic study on the domestic fowl, Gallus gallus variant domesticus. Tiss Cell 35:375–391

    CAS  Google Scholar 

  • Maina JN (2004a) Morphogenesis of the laminated, tripartite cytoarchitectural design of the blood-gas barrier of the avian lung: a systematic electron microscopic study on the domestic fowl, Gallus gallus variant domesticus. Tiss Cell 36:129–139

    CAS  Google Scholar 

  • Maina JN (2004b) Systematic analysis of hematopoietic, vasculogenetic and angiogenetic phases in the developing embryonic avian lung, Gallus gallus variant domesticus. Tissue Cell 36:307–322

    PubMed  CAS  Google Scholar 

  • Maina JN (2005) The lung air sac system of birds: development, structure, and function. Springer, Heidelberg

    Google Scholar 

  • Maina JN (2006) Development, structure and function of a novel respiratory organ, the lung-air sac system of birds: to go where no other vertebrate has gone. Biol Rev 81:545–579

    PubMed  Google Scholar 

  • Maina JN (2007a) Spectacularly robust! Tensegrity principle explains the mechanical strength of the avian lung. Respir Physiol Neurobiol 155:1–10

    PubMed  CAS  Google Scholar 

  • Maina JN (2007b) Minutialization at its extreme best! The underpinnings of the remarkable strengths of the air- and the blood capillaries of the avian lung: a conundrum. Respir Physiol Neurobiol 159:141–145

    PubMed  CAS  Google Scholar 

  • Maina JN (2008a) Structure of the air- and blood capillaries of the avian lung and the debate regarding the basis of their astounding strengths. In: Morris S, Vosloo A (eds) Proceedings of the 4th Comparative Physiology and Biochemistry Conference in Africa, Masai Mara Game Reserve, Kenya (eds.) Medimond S.r.l, via Maserati, Bologna (Italy) pp 304–313

    Google Scholar 

  • Maina JN (2008b) Functional morphology of the avian respiratory system, the lung-air sac system: efficiency built on complexity. Ostrich 79:117–132

    Google Scholar 

  • Maina JN, Africa M (2000) Inspiratory aerodynamic valving in the avian lung: functional morphology of the extrapulmonary primary bronchus. J Exp Biol 203:2865–2876

    PubMed  CAS  Google Scholar 

  • Maina JN, Cowley HM (1998) Ultrastructural characterization of the pulmonary cellular defenses in the lung of a bird, the rock dove, Columba livia. Proc R Soc Lond B Biol Sci 265:1567–1572

    Google Scholar 

  • Maina JN, King AS (1982) The thickness of the avian blood-gas barrier: qualitative and quantitative observations. J Anat 134:553–562

    PubMed  CAS  Google Scholar 

  • Maina JN, King AS (1984) The structural-functional correlation in the design of of the bat lung. J Exp Biol 111:43–63

    PubMed  CAS  Google Scholar 

  • Maina JN, King AS (1987) A morphometric study of the lung of a humboldt penguin. (Spheniscus humboldti) Zentralb Vet Med C Anat Histo Embryol 16: 293–297

    Google Scholar 

  • Maina JN, King AS (1989) The lung of the emu, Dromaius novaehollandiae: a microscopic and morphometric study. J Anat 163:67–74

    PubMed  CAS  Google Scholar 

  • Maina JN, Maloiy GMO (1985) The morphometry of the lung of the lungfish (Protopterus aethiopicus): its structural-functional correlations. Proc R Soc Lond B Biol Sci 244:399–420

    Google Scholar 

  • Maina JN, Maloiy GMO (1986) The morphology of the respiratory organs of the African air-breathing catfish (Clarias mossambicus): a light, and electron microscopic study, with morphometric observations. J Zool (London) 209:421–445

    Google Scholar 

  • Maina JN, Maloiy GMO (1988) A scanning and transmission electron microscopic study of the lung of a caecilian Boulengerula taitanus. J Zool (London) 215:739–751

    Google Scholar 

  • Maina JN, Maloiy GMO (1998) Adaptations of a tropical swampworm, Alma emini, for subsistence in a H2S-rich habitat: evolution of endosymbiotic bacteria, sulfide metabolizing bodies, and novel processes of elimination of neutralized sulfide complexes. J Struct Biol 122:257–266

    PubMed  CAS  Google Scholar 

  • Maina JN, Nathaniel C (2001) A qualitative and quantitative study of the lung of an ostrich, Struthio camelus. J Exp Biol 204:2313–2330

    PubMed  CAS  Google Scholar 

  • Maina JN, Van Gils P (2001) Morphometric characterization of the airway and vascular systems of the lung of the domestic pig, Sus scrofa: comparison of the airway, arterial, and venous systems. Comp Biochem Physiol 130A:781–798

    CAS  Google Scholar 

  • Maina JN, West JB (2005) Thin and strong! The bioengineering dilemma in the structural and functional design of the blood-gas barrier. Physiol Rev 85:811–844

    PubMed  CAS  Google Scholar 

  • Maina JN, Woodward JD (2009) Three-dimensional serial section computer reconstruction of the arrangement of the structural components of the parabronchus of the ostrich, Struthio camelus lung. Anat Rec 292:1685–1698

    Google Scholar 

  • Maina JN, Abdalla MA, King AS (1982a) Light microscopic morphometry of the lungs of 19 avian species. Acta Anat 112:264–270

    PubMed  CAS  Google Scholar 

  • Maina JN, King AS, King DZ (1982b) A morphometric analysis of the lung of a species of bat. Respir Physiol 50:1–11

    PubMed  CAS  Google Scholar 

  • Maina JN, King AS, Settle G (1989a) An allometric study of the pulmonary morphometric parameters in birds, with mammalian comparison. Phil Trans R Soc Lond B Biol Sci 326:1–57

    CAS  Google Scholar 

  • Maina JN, Maloiy GMO, Warui CN, Njogu EK, Kokwaro ED (1989b) A scanning electron microscope study of the reptilian lungs: the savanna monitor lizard (Varanus exanthematicus) and the pancake tortoise (Malacochersus tornieri). Anat Rec 224:514–522

    PubMed  CAS  Google Scholar 

  • Maina JN, Thomas SP, Hyde DM (1991) A morphometric study of bats of different size: correlations between structure and function of the chiropteran lung. Philos Trans R Soc Lond B Biol Sci 333B:31–50

    Google Scholar 

  • Maina JN, Kisia SM, Wood CM, Bergman HL, Narahara A et al (1996a) The morphology and morphometry of the gills of Oreochromis alcalicus grahami: an ecomorphological study. Intern J Salt Lakes Res 5:131–156

    Google Scholar 

  • Maina JN, Wood CM, Narahara A, Bergman HL, Laurent P, Walsh P (1996b) Morphology of the swim (air) bladder of a cichlid teleost: Oreochromis alcalicus grahami (Trewavas, 1983), a fish adapted to a hyperosmotic, alkaline and hypoxic environment: a brief outline of the structure and function of the swim-bladder. In: Dutta HH, Munshi JSD (eds) Recent advances in fish biology. Oxford University Press, New Delhi, pp 27–45

    Google Scholar 

  • Maina JN, Wood CM, Maloiy GMO (1998) Respiratory stratagems, mechanisms and morphology of the lung of a tropical swamp worm, Alma emini (Oligochaeta: Glossoscolecidae): a transmission and scanning electron microscopic study. J Zool (London) 245:483–495

    Google Scholar 

  • Maina JN, Veltcamp CJ, Henry J (1999) A study of the spatial organization of the gas-exchange components of a snake lung - the sandboa Eryx colubrinus (Reptilia: Ophidia; Corubridae) by latex casting. J Zool (London) 247:81–90

    Google Scholar 

  • Maina JN, Madan AK, Alison B (2003) Expression of fibroblast growth factor-2 (FGF-2) in early stages (days 3–11) of the development of the avian lung, Gallus gallus variant domesticus. J Anat 203:505–512

    PubMed  CAS  Google Scholar 

  • Maina JN, Singh P, Moss EA (2009) Inspiratory aerodynamic valving occurs in the ostrich, Struthio camelus lung: computational fluid dynamics study under resting unsteady state inhalation. Respir Physiol Neurobiol 169:262–270

    PubMed  CAS  Google Scholar 

  • Maina JN, Jimoh SA, Hosie M (2010a) Implicit mechanistic role of the collagen-, smooth muscle, and elastic tissue components in strengthening the air- and the blood capillaries of the avian lung. J Anat 217:597–608

    PubMed  Google Scholar 

  • Maina JN, West JB, Orgeig S, Foot NJ, Daniels CB, Kiama SG, Gehr P, Mühlfeld C, Blank F, Müller L, Lehmann A, Brandenberger C, Rothen-Rutishauser B (2010b) Recent advances into understanding some aspects of the structure and function of the mammalian- and avian lungs. Physiol Biochem Zool 83:792–807

    PubMed  CAS  Google Scholar 

  • Maina JN, West JB, Orgeig S, Foot NJ, Daniels CB et al (2010a) Recent advances into understanding some aspects of the structure and function of the mammalian- and avian lungs. Physiol Zool Biochem 83:792–807

    CAS  Google Scholar 

  • Maines MD (1989) Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J 2:2557–2568

    Google Scholar 

  • Maines MD (1997) The heme oxygenase system: a regulator of second messanger gases. Annu Rev Pharmacol Toxicol 37:517–554

    PubMed  CAS  Google Scholar 

  • Maines MD (2005) The heme oxygenase system. Antoxid Redox Signal 7:1761–1766

    CAS  Google Scholar 

  • Makanya AN, Djonov V (2009) Parabronchial angioarchitecture in developing and adult chickens. J Appl Physiol 106:1959–1969

    PubMed  CAS  Google Scholar 

  • Makanya AN, Maina JN (1994) Comparative morphology of the gastrointestinal tract of fruit and insect-eating bats. Afr J Ecol 32:158–168

    Google Scholar 

  • Makanya AN, Mayhew TM, Maina JN (1995) Morphometry of the gastrointestinal system of insectivorous and frugivorous bats: analysis an anisotropic tissue. J Anat 187:361–368

    PubMed  Google Scholar 

  • Makanya AN, Stauffer D, Ribatti D, Burri PH, Djonov V (2005) Microvascular growth, development, and remodelling in the embryonic avian kidney: interplay between sprouting and intussusceptive angiogenic mechanisms. Microsc Res Tech 66:275–288

    PubMed  CAS  Google Scholar 

  • Makanya AN, Hlushchuk R, Baum O, Velinov N, Ochs M, Djonov V (2007) Microvascular endowment in the developing chicken embryo lung. Am J Physiol Lung Cell Mol Physiol 292:L1136–L1146

    PubMed  CAS  Google Scholar 

  • Makanya AN, El-Darawish Y, Kavol BM, Djonov V (2011) Spatial an functional relationships between air conduits and blood capillaries in the pulmonary gas exchange tissue of adult and developing chickens. Microsc Res Tech 74:159–169

    PubMed  Google Scholar 

  • Malan A (1982) Respiration and acid-base state in hibernation. In: Layman CP, Willis JS, Malan A, Wang LCH (eds) Hibernation and torpor in mammals and birds. Academic, New York, pp 237–282

    Google Scholar 

  • Malcolm D (1965) The natural history of oxygen. J Gen Physiol 49:5–27

    Google Scholar 

  • Mallat J, Paulsen C (1986) Gill ultrastructure of the Pacific hagfish Eptatretus stouti. Am J Anat 177:243–269

    Google Scholar 

  • Maloney JE (1984) The development of the respiratory system in placental mammals. In: Seymour R (ed) Respiration and metabolism in embryonic vertebrates. Dr Junk W Publishers, Dordrecht, pp 57–109

    Google Scholar 

  • Malpel S, Mendelsohn C, Cardoso WV (2000) Regulation of retinoic acid signalling during lung morphogenesis. Developent 127:3057–3067

    CAS  Google Scholar 

  • Maltepe E, Schmidt JV, Baunoch D, Bradfield CA, Simon MC (1997) Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature (London) 386:403–407

    CAS  Google Scholar 

  • Malvin GM (1988) Microvascular regulation of cutaneous gas exchange in amphibians. Am Zool 28:999–1007

    Google Scholar 

  • Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD et al (2005) Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105:659–669

    PubMed  CAS  Google Scholar 

  • Mancardi D, Varetto G, Bucci E, Maniero F, Guiot C (2008) Fractal parameters and vascular networks: facts and artifacts. Theor Biol Med Mod 5:12. doi:10.1186/1742-4682-5-12

    Google Scholar 

  • Mancardi D, Penna C, Merlino A, Del Soldalo P, Wink DA, Pagliaro P (2009) Physiological and pharmacological features of the novel gasotransmitter: hydrogen sulfide. Biochim Biophys Acta 1787:864–872

    PubMed  CAS  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. Freeman, San Francisco, CA

    Google Scholar 

  • Mangum CP (1963) Oxygen consumption in different species of polchaete worms. Comp Biochem Physiol 10:335–349

    PubMed  CAS  Google Scholar 

  • Mangum CP (1976) Primitive adaptations. In: Newell RC (ed) Adaptations to the environment: essays on the physiology of marine animals. Butterworth, London, pp 191–278

    Google Scholar 

  • Mangum CP (1980) Distribution of the respiratory pigments and the role of anaerobic metabolism in the lamellibranch molluscs. In: Gilles R (ed) Animals and environmental fitness. Pergamon, Oxford, pp 171–184

    Google Scholar 

  • Mangum CP (1985) Oxygen transport in invertebrates. Am J Physiol 248:R505–R514

    PubMed  CAS  Google Scholar 

  • Mangum CP (1990) Gas transport in the blood. In: Gilbert DL, Adelman WJ, Arnold JM (eds) Squid as experimental animals. Plenum, New York, pp 443–468

    Google Scholar 

  • Mangum CP (1992a) Physiological adaptation of crustacean hemocyanins: an extended investigation of the blue crab, Callinectes sapidus. In: Wood SC, Weber RE, Hargens AR, Millard RW (eds) Physiological adaptations in vertebrates: respiration, circulation, and metabolism. Marcel, New York, pp 279–293

    Google Scholar 

  • Mangum CP (ed) (1992b) Blood and tissue oxygen carriers. Springer, Heidelberg

    Google Scholar 

  • Mangum CP (1998) Major events in the evolution of the oxygen carriers. Am Zool 38:1–13

    CAS  Google Scholar 

  • Mangum CP, Burnett LE (1987) Response of sipunculid hemeerythrins to inorganic ions and CO2. J Exp Zool 244:59–65

    CAS  Google Scholar 

  • Mangum CP, Lykkeboe G, Johansen K (1975a) Oxygen uptake and the role of hemoglobin in the East African swampworm Alma emini. Comp Biochem Physiol 52A:477–482

    Google Scholar 

  • Mangum CP, Woodin BL, Bonaventura C, Sullivan B, Bonaventura J (1975b) The role of coelomic and vascular hemoglobins in the annelid family Terebellidae. Comp Biochem Physiol 51A:281–294

    Google Scholar 

  • Mangum CP, Scott JL, Black REL, Miller KI, Van Holde KE (1985) Centipedal hemocyanin: its structure and its implications for arthropod phylogeny. Proc Natl Acad Sci USA 82:3721–3725

    PubMed  CAS  Google Scholar 

  • Manini E, Luna GM, Corinaldesi C, Zepplli D, Bortoluzzi G et al (2008) Prokaryote diversity and virus abundance in shallow hydrothermal vents of the Mediterranean Sea (Panarea Island) and the Pacific Ocean (north Sulawesi-Indonesia). Microb Ecol 55:626–639

    PubMed  CAS  Google Scholar 

  • Maniscalco WM, Watkins RH, Finkelstein JN, Campbell MH (1995) Vascular endothelial growth factor mRNA increases in alveolar epithelial cells during recovery from oxygen injury. Am J Respir Cell Mol Biol 13:377–386

    PubMed  CAS  Google Scholar 

  • Manwell C (1958) The oxygen respiratory pigment equilibrium of the hemocyanin and myoglobin of the amphineuron mollusc Cryptochiton stelleri. J Comp Physiol 52:341–353

    CAS  Google Scholar 

  • Manwell C (1960) Histological specifity of respiratory pigments. I. Comparisons of the coelom and muscle hemoglobins of the polychaete worm Travisia pupa and the echiuroid worm Arhynchite pugettensis. Comp Biochem Physiol 1:267–276

    CAS  Google Scholar 

  • Marais E, Klok CJ, Terblanche JS, Chown SL (2005) Insect gas exchange patterns: a phylogenetic perspective. J Exp Biol 208:4495–4507

    PubMed  Google Scholar 

  • Marcus H (1937) Lungen. In: Bolk L, Goppert E, Kallius E, Lubosch W (eds) Handbuch der vergleichenden Anatomie der Wirbeltiere, III. Urban and Schwarzenberg, Berlin

    Google Scholar 

  • Marcus E, Marcus C (1960) On Siphonaria hispada. Bull Fac Ciencias e letras, Univ de Sao Paulo (Brazil) 23:107–140

    Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution. WH Freeman and Company, New York

    Google Scholar 

  • Markl J, Decker H (1992) Molecular structure of the arthropod hemocyanins. Adv Comp Environ Physiol 13:325–376

    CAS  Google Scholar 

  • Markl J, Moeller A, Martin AG, Rheinbay J, Gebauer W, Depoix F (2009) 10-Å cryoEM structure and molecular model of the myriapod (Scutigera) 6x6mer hemocyanin: understanding a giant transport protein. J Mol Biol 366:1332–1350

    Google Scholar 

  • Markley JS, Carrier DR (2010) The cost of ventilation in birds measured after unidirectional artificial ventilation. Comp Biochem Physiol A Mol Integr Physiol 155:146–153

    PubMed  Google Scholar 

  • Marois C, Zuckerman B, Konopacky QM, Macintosh B, Barman T (2010) Images of a fourth planet orbiting HR 8799. Nature (London) 468:1080–1097

    CAS  Google Scholar 

  • Marshall NB (1960) Swim bladder structure of deepsea fishes in relation to their systematics and biology. Discov Rep 31:1–122

    Google Scholar 

  • Marshall DJ, McQuaid CD (1992) Comparative aerial metabolism and water relations of the intertidal limpets, Patella granularis L (Mollusca: Prosobranchia) and Siphonaria oculus Kr (Mollusca: Pulmonata. Physiol Zool 65:1040–1056

    Google Scholar 

  • Marshall C, Schultze H (1992) Relative importance of molecular, neontological, and paleontological data in understanding the biology of the vertebrate invasion of land. J Mol Evol 35:93–1010

    PubMed  CAS  Google Scholar 

  • Marshall KJ, Reiter RJ, Poeggeler B, Aruoma OI, Halliwell B (1996) Evaluation of the antioxidant activity of melatonin in vitro. Free Radical Biol Med 21:307–315

    CAS  Google Scholar 

  • Marteyn B, West NP, Browning DF, Cole JA, Shaw JG et al (2010) Modulation of Shigella virulence in response to available oxygen in vivo. Nature (London) 465:355–358

    CAS  Google Scholar 

  • Martin KM, Hutchison VH (1979) Ventilatory activity in Amphiuma tridactylum and Siren lacertina (Amphibia, Caudata). J Herpatol 13:427–434

    Google Scholar 

  • Martin AG, Depoix F, Stohr M, Meissner U, Hagner-Holler S et al (2007) Limulus polyhemus hemocyanin: 10Å cryo-EM structure, sequence analysis, molecular modelling and rigid-body fitting reveal the interfaces between the eight hexamers. J Mol Biol 296:459–472

    Google Scholar 

  • Martini M (1997) CO2 emissions in volcanic areas: case histories and hazaards. In: Raschi A, Miglietta F, Tognetti R, van Gardingen PR (eds) Plant responses to elevated CO2: evidence from natural springs. Cambridge University Press, Cambridge, pp 89–123

    Google Scholar 

  • Marxsen JH, Stengel P, Doege K, Heikkinen P, Jokilehto T et al (2004) Hypoxia-inducible factor-1 (Hif-1) promotes its degradation by induction of Hif-alpha-prolyl-4-hydrolyses. Biochem J 381:761–767

    PubMed  CAS  Google Scholar 

  • Mason WJ (1998) Macrobenthic monitoring in the Lower St Johns River Florida. Environ Monit Assess 50:101–130

    Google Scholar 

  • Massabuau JC, Dejours P, Sakakibara Y (1984) Ventilatory CO2 drive in the crayfish: influence of oxygen consumption level and water oxygenation. J Comp Physiol 154B:65–72

    Google Scholar 

  • Massaro GD, Massaro D (2000) Retinoic acid partially rescues failed septation in rats and mice. Am J Physiol 278:L955–L960

    CAS  Google Scholar 

  • Massaro AF, Mehta S, Lilly CM, Kobzik L, Reilley JJ, Drazen JM (1996) Elevated nitric oxide concentrations in isolated lower airway gas of asthmatic subjects. Am J Respir Crit Care Med 153:1510–1514

    PubMed  CAS  Google Scholar 

  • Massaro GD, Massaro D, Chan WY, Clerch LB, Ghyselinck N et al (2000) Retinoic acid receptor-beta: an endogenous inhibitor of the perinatal formation of pulmonary alveoli. Physiol Genomics 4:51–57

    PubMed  CAS  Google Scholar 

  • Massaro GD, Massaro D, Chambon P (2003) Retinoic acid receptor-alpha regulates pulmonary alveolus formation in mice after, but not during, perinatal period. Am J Physiol Lung Cell Mol Physiol 284:431–433

    Google Scholar 

  • Mathai JC, Missner A, Kügler P, Saparov SM, Zeidel ML et al (2009) No facilitator required for membrane transport of hydrogen sulfide. Proc Natl Acad Sci USA 106:16633–16638

    PubMed  CAS  Google Scholar 

  • Matsumoto T, Claesson-Welsh L (2001) VEGF receptor signal transduction. Sci STKE 112:RE21

    Google Scholar 

  • Matsumura H, Setoguti T (1984) Electron microscopic studies of the lung of the salamander. Hynobius nebulosus. I. A scanning and transmission microscopic observation. Okajimas Folia Anat Jpn 61:15–25

    PubMed  CAS  Google Scholar 

  • Mattheus PCS (1986) Quantum chemistry of atoms and molecules. Cambridge University Press, Cambridge

    Google Scholar 

  • Matuszek Z, Reszka KJ, Chignell CF (1997) Reaction of melatonin and related indoles with hydroxyl radical: EPR and spin trapping investigations. Free Radic Biol Med 23:367–372

    Google Scholar 

  • Mauroy B, Filoche M, Weibel ER, Sapoval B (2004) An optimal bronchial tree may be dangerous. Nature (London) 427:633–636

    CAS  Google Scholar 

  • May ML (1982) Heat exchange and endothermy in protodonata. Evolution 36:1051–1058

    Google Scholar 

  • May RM (1992) How many species inhabit Earth? Sci Am, Oct Issue”:18–24

    Google Scholar 

  • Maynard-Smith J (1978) Optimization theory in evolution. Annu Rev Ecol Syst 9:31–56

    Google Scholar 

  • Mazess RB (2005) The oxygen cost of breathing in man: effects of altitude, training, and race. Am J Phys Anthropol 29:365–375

    Google Scholar 

  • McAlester AL (1970) Animal extinctions, oxygen consumption and atmospheric history. J Paleontol 44:405–409

    Google Scholar 

  • McArthur AG, Tunnicliffe V (1998) In: Mills RA, Harrison K (eds) Modern ocean floor processes and the geological record. Geological Society Special Publication 148, Geological Society, London, pp 271–2919

    Google Scholar 

  • McClanahan LL, Rodolfo R, Shoemaker VH (1994) Frogs and toads in deserts. Sci Am 3:82–88

    Google Scholar 

  • McClintock WE, Bradley ET, Vervack Ronald J et al (2008) Mercury exosphere: observations during Messenger’s first Mercury flyby. Science 321:92–94

    PubMed  CAS  Google Scholar 

  • McCord JM (1983) The superoxide free radical: its biochemistry and pathophysiology. Surgery 94:404–406

    Google Scholar 

  • McCord JM (1995) Superoxide radical: controversies, contradictions, and paradoxes. Proc Soc Exp Biol Med 209:112–117

    PubMed  CAS  Google Scholar 

  • McCormark FX, Whitsett JA (2002) The pulmonary collectins, SP-A and SP-D, orchestrate innate immunity in the lung. J Clin Invest 109:707–712

    Google Scholar 

  • McCoubrey WK, Huang TJ, Maines MD (1992) Human heme oxygenase-2: characterization and expression of a full-length cDNA and evidence suggesting that the two HO-2 transcripts may differ by choice of polyadenylation signal. Arch Biochem Biophys 295:13–20

    PubMed  CAS  Google Scholar 

  • McCoubrey WK, Huang TJ, Maines MD (1997) Isolation and characterization of cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem 247:725–732

    PubMed  CAS  Google Scholar 

  • McCutcheon FH (1964) Organ systems in adaptation: the respiratory system. In: Dill DB, Adolph EF, Wilber CG (eds) Handbook of physiology, sect 4, adaptation to the environment. American Physiological Society, Washington, DC, pp 167–191

    Google Scholar 

  • McDonald FM, Simonson E (1953) Human electrocardiogram during and after inhalation of thirty percent carbon dioxide. J Appl Physiol 6:304–310

    Google Scholar 

  • McDonald DG, McMahon BR, Wood CM (1977) Patterns of heart and scaphognathite activity in the crab Cancer magister. J Exp Zool 202:33–44

    Google Scholar 

  • McDougall JDB, McCobe M (1967) Diffusion coefficent of oxygen through tissues. Nature (London) 215:1173–1174

    Google Scholar 

  • McGhee GR (1989) Frasian-Famennian extinction event. In: Briggs DEG, Crowther PR (eds) Paleobiology – a synthesis. Brackwell Scientific Publications, Oxford, pp 97–176

    Google Scholar 

  • McGowan S, Jackson SK, Jenkins-Moore M, Dai HM, Chambon P, Snyder JM (2000) Mice bearing deletions of retinoic acid receptors demonstrate reduced lung elastin and alveolar numbers. Am J Respir Cell Mol Biol 23:162–167

    PubMed  CAS  Google Scholar 

  • McGregor M, Becklake M (1961) The relationship of oxygen cost of breathing to respiratory mechanical work and respiratory force. J Clin Invest 40:971–980

    PubMed  CAS  Google Scholar 

  • McLelland J (1978) Respiration in birds. Indian J Ornithol 16:1–11

    Google Scholar 

  • McLelland J (1989) Anatomy of the lungs and air sacs. In: King AS, McLelland J (eds) Form and function in birds, vol IV. Academic, London, pp 221–279

    Google Scholar 

  • McMahon RF (1985) Functions and functioning of crustacean hemocyanin. In: Lamy J, Truchot JP, Gilles R (eds) Respiratoty pigments in animals. Springer, Heidelberg, pp 35–58

    Google Scholar 

  • McMahon BR (1988) Physiological responses to periodic emergency in intertidal molluscs. Am Zool 28:97–114

    Google Scholar 

  • McMahon BR, Burggren WW (1979) Respiration and adaptation to the terrestrial habitat in the land hermit crab, Coenobita clypeatus. J Exp Biol 79:265–281

    Google Scholar 

  • McMahon BR, Wilkens JL (1977) Periodic respiratory and circulatory performance in the red rock crab Cancer productus. J Exp Zool 202:363–374

    Google Scholar 

  • McMahon BR, Wilkens JL (1983) Ventilation, perfusion and oxygen uptake. In: Mantel LH (ed) The physiology of crustacea, vol 5. Academic, London, pp 289–372

    Google Scholar 

  • Meban C (1973) The pneumocyte in the lung of Xenopus laevis. J Anat 114:235–244

    PubMed  CAS  Google Scholar 

  • Meban C (1977) Ultrastructure of the respiratory epithelium in the lungs of the tortoise, Testudo.graeca. Cell Tissue Res 181:267–275

    PubMed  CAS  Google Scholar 

  • Meban C (1978a) Functional anatomy of the lungs of the green turtle, Lacerta viridis. J Anat 125:421–436

    PubMed  CAS  Google Scholar 

  • Meban C (1978b) The respiratory epithelium in the lungs of the slow worm, Anguilla fragilis. Cell Tissue Res 190:337–354

    PubMed  CAS  Google Scholar 

  • Meban C (1980) Thicknesses of the air-blood barriers in vertebrate lungs. J Anat 131:299–307

    PubMed  CAS  Google Scholar 

  • Meduna JL (1950) Carbon dioxide therapy. CC Thomas, Springfield, IL

    Google Scholar 

  • Mendelson CR, Boggaram V (1991) Hormonal control of the surfactant sytem in the fetal lung. Annu Rev Physiol 53:415–440

    PubMed  CAS  Google Scholar 

  • Menon JG, Arp AJ (1992) Morphological adaptations of the respiratory hindgut of a marine echiurian worm. J Morphol 214:131–138

    Google Scholar 

  • Mercer RR, Crapo JD (1990) Spatial distribution of collagen and elastic fibers in the lung. J Appl Physiol 69:756–765

    PubMed  CAS  Google Scholar 

  • Mercer RR, Russell ML, Crapo JD (1994) Alveolar septal structure in different species. J Appl Physiol 77:1060–1066

    PubMed  CAS  Google Scholar 

  • Mertens R (1942) Die Familie der Warane (Varanidae). I. Allgemeines. Abh Senck Naturforsch Gesellsch 462:1–116

    Google Scholar 

  • Metzger RJ, Krasnow MA (1999) Genetic control of branching morphogenesis. Science 284:1635–1659

    PubMed  CAS  Google Scholar 

  • Metzger RJ, Klein OD, Martin GR, Krasnov MA (2008) The branching programme of the mouse lung development. Nature (London) 453:745–750

    CAS  Google Scholar 

  • Meyer EP (1989) Corrosion casts as a method for investigation of the insect tracheal sytem. Cell Tissue Res 256:1–6

    Google Scholar 

  • Meyer MR, Worth H, Scheid P (1976) Gas-blood CO2 equilibrqtion in parabronchial lungs of birds. J Appl Physiol 41:302–309

    PubMed  CAS  Google Scholar 

  • Meyer MR, Burger RE, Scheid P, Piiper J (1977) Analyses des échanges gazeux dans les poumons d’oiseaux. J Physiol Paris 73:9A

    Google Scholar 

  • Michel T, Feron O (1997) Nitric oxide synthetases: which, where, how, and why? J Clin Invest 100:2146–2152

    PubMed  CAS  Google Scholar 

  • Michelakis ED, Archer SL, Weir EK (1995) Acute hypoxic pulmonary vasoconstriction: a model of oxygen sensing. Physiol Res 44:361–367

    PubMed  CAS  Google Scholar 

  • Mikucki JA, Pearson A, Johnston DT, Turchyn AV, Farquhar J, Schrag DP, Anbar AD, Priscu JC, Lee PA (2009) A contemporary microbially maintained subglacial ferrous ocean. Science 324:397–400

    PubMed  CAS  Google Scholar 

  • Milani A (1894) Beiträge zur Kenntnis der Reptilienlunge. II. Zool Jahrb Abt Anat Ontog Tiere 7:545–592

    Google Scholar 

  • Milhorn HT, Benton R, Ross R, Guyton AC (1965) A mathematical model of the human respiratory control system. Biophys J 5:27–46

    PubMed  Google Scholar 

  • Milic-Emili J (1991) Work of breathing. In: West JB, Crystal RG (eds) The lung: scientific foundations. Raven, New York, pp 1065–1075

    Google Scholar 

  • Milic-Emili J, Henderson JAM, Kaneko K (1966) Regional distribution of inspired gas in the lung. J Appl Physiol 21:749–759

    PubMed  CAS  Google Scholar 

  • Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP et al (1993) High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72:835–846

    PubMed  CAS  Google Scholar 

  • Milledge JS (1985) The great oxygen secretion controversy. Lancet 2(8469–70):1408–1411

    PubMed  CAS  Google Scholar 

  • Miller PL (1960) Respiration in the desert locust. III. Ventilation and spiracles during flight. J Exp Biol 37:264–278

    Google Scholar 

  • Miller PL (1966) The supply of oxygen to the active flight muscles of some large beetles. J Exp Biol 45:285–304

    PubMed  CAS  Google Scholar 

  • Miller PL (1974) Respiration - aerial gas transport. In: Rockstein M (ed) The physiology of insects, 2nd edn. Academic, New York, pp 346–402

    Google Scholar 

  • Miller PL (1982) Respiration. In: Bell HJ, Adiyodi KG (eds) The American cockroach. Chapman and Hall, London, pp 87–116

    Google Scholar 

  • Miller DN, Bondurant S (1961) Surface characteristics of vertebrate lung extracts. J Appl Physiol 16:1075–1077

    PubMed  CAS  Google Scholar 

  • Miller K, Camilliere JJ (1981) Physical training improves swimming performance of the African clawed frog, Xenopus laevis. Herpetologica 37:1–10

    Google Scholar 

  • Miller MA, Hales CA (1979) Role of cytochrome P-450 in alveolar hypoxic pulmonary vasoconstriction in dogs. J Clin Invest 64:666–673

    PubMed  CAS  Google Scholar 

  • Miller RK, McCrea PD (2010) Wnt to build a tube: contributions of Wnt signaling to epithelial tubulogenesis. Dev Dyn 239:77–93

    PubMed  CAS  Google Scholar 

  • Miller SL, Orgel LE (1974) The origins of life on Earth. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Miller LA, Wert SE, Whitsett JA (2001) Immunolocalization of sonic hedgehog (SHH) in developing mouse lung. J Histochem Cytochem 49:1593–1604

    PubMed  CAS  Google Scholar 

  • Miller LA, Wert SE, Clark JC, Xu Y, Perl AK, Whitsett JA (2004) Role of Sonic hedgehog in patterning of tracheal-bronchial cartilage and the peripheral lung. Dev Dyn 231:57–71

    PubMed  CAS  Google Scholar 

  • Miller NJ, Postle AD, Orgeig S, Koster G, Daniels CB (2006) The composition of pulmonary surfactant from diving mammals. Respir Physiol Neurobiol 152:152–158

    PubMed  CAS  Google Scholar 

  • Milsom WK (1984) The interrelationship between pulmonary mechanics and spontaneous breathing pattern in the Tokay lizard, Gekko gecko. J Exp Biol 113:203–214

    Google Scholar 

  • Milsom WK (1989) Mechanisms of ventilation in lower vertebrates: adaptations to respiratory and non-respiratory constraints. Can J Zool 67:2943–2963

    Google Scholar 

  • Milsom WK (1991) Intermittent breathing in vertebrates. Annu Rev Phyaiol 53:87–105

    CAS  Google Scholar 

  • Milsom WK (2003) Phylogeny of CO2/pH chemoreception in vertebrates. Respir Physiol 131:29–41

    Google Scholar 

  • Min H, Danilenko DM, Scully SA, Bolon B, Ring BD et al (1998) FGF-10 is required for both limb and lung development and exhibits striking functional similarities to Drosophila branchless. Genes Dev 12:3156–3161

    PubMed  CAS  Google Scholar 

  • Mink JW, Blumenschine RJ, Adams DB (1981) Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am J Physiol 241:R203–R212

    PubMed  CAS  Google Scholar 

  • Minoo P, King RJ (1994) Epithelial-mesenchymal interaction in lung development. Annu Rev Physiol 56:13–45

    PubMed  CAS  Google Scholar 

  • Minoo P, Su G, Drum H, Bringas P, Kimura S (1999) Defects in tracheooesophangeal and lung morphogenesis in Nkx2.1(−/−) mouse embryos. Dev Biol 209:60–71

    PubMed  CAS  Google Scholar 

  • Mirams GR, Bryne M, King JR (2010) A multiple timescale analysis of a mathematical model of the Wnt/β-catenin signalling pathway. J Math Biol 60:131–160

    PubMed  Google Scholar 

  • Mitchell GS, Gleeson TT, Bennett AF (1981) Pulmonary oxygen transport during activity in lizards. Respir Physiol 43:365–375

    PubMed  CAS  Google Scholar 

  • Miura T (2009) Modeling lung branching morphogenesis. Curr Top Dev Biol 81:291–310

    Google Scholar 

  • Miura T, Hartmann D, Kinboshi M, Komada M, Ishibashi M, Shiota K (2009) The cyt-branch difference in developing chick lung results from a different morphogen diffusion coefficient. Mech Dev 126:160–172

    PubMed  CAS  Google Scholar 

  • Moerbitz C, Hetz SK (2010) Trade-offs between metabolic rate and spiracular conductance in discontinuous gas exchange of Samia cynthia (Lepidoptera, Saturniidae). J Insect Physiol 56:536–542

    PubMed  CAS  Google Scholar 

  • Moll W (1966) The diffusion coefficient of hemoglobin. Respir Physiol 1:357–365

    PubMed  CAS  Google Scholar 

  • Mollard R, Ghyselinck NB, Wendling O, Chambon P, Mark M (2000a) Stage-dependent responses of the developing lung to retinoic acid signaling. Int J Dev Biol 44:457–462

    PubMed  CAS  Google Scholar 

  • Mollard R, Viville S, Ward SJ, Decimo D, Chambon P, Delle P (2000b) Tissue-specific expression of retinoic acid receptor isoform transcripts in mouse embryo. Mech Dev 94:223–232

    PubMed  CAS  Google Scholar 

  • Monacci WT, Merrill MJ, Oldfield EH (1993) Expression of vascular permeability factor/vascular endothelial growth factor in normal rat tissues. Am J Physiol 264:C995–C1002

    PubMed  CAS  Google Scholar 

  • Moncada S, Higgs A (1993) The L-arginine-nitric oxide pathway. New Engl J Med 329:2002–2012

    PubMed  CAS  Google Scholar 

  • Moncada S, Palmer RM, Higgs E (1991) Niric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  • Monge MC, Monge CC (1968) Adaptation to high altitude. In: Hafez ESE (ed) Adaptation of domestic animals. Lea and Febiger, Philadelphia, PA, pp 194–201

    Google Scholar 

  • Moon RT (2005) Wnt/beta-catenin pathway. Sci STKE 2005:1cm

    Google Scholar 

  • Moore SJ (1976) Some spider organs as seen by the scanning electron microscope, with special reference to the booklung. Bull Br Arachnol Soc 3:177–187

    Google Scholar 

  • Morgan N (1995) Chemistry in action. Oxford University Press, New York

    Google Scholar 

  • Morley C, Bangham A (1981) Physical properties of surfactant under compression. Prog Respir Res 15:188–193

    CAS  Google Scholar 

  • Morony JJ, Bock WJ, Farrand J (1975) Reference list of the birds of the World. American Museum of Natural History, Department of Ornithology, New York

    Google Scholar 

  • Morris S, Taylor AC (1985) The respiratory response of the intertidal prawn Palaemon elegans (Rathke) to hypoxia and hyperoxia. Comp Biochem Physiol 81A:633–639

    Google Scholar 

  • Morrisey EE, Hogan BLM (2010) Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 18:8–23

    PubMed  CAS  Google Scholar 

  • Morrisey EE, Ip HS, Lu MM, Parmacek MS (1996) GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev Biol 177:309–322

    PubMed  CAS  Google Scholar 

  • Morrisey EE, Ip HS, Lu MM, Parmacek MS (1997) GATA-5: a transcriptional activator expressed in a novel temporally-restricted pattern during embryonic development. Dev Biol 183:21–36

    PubMed  CAS  Google Scholar 

  • Mortimer NT, Moberg KH (2009) Regulation of Drosophila embryonic tracheogenesis by dVHL and hypoxia. Dev Biol 329:294–305

    PubMed  CAS  Google Scholar 

  • Mosser F (1902) Beiträge zur vergleichenden Entwicklungsgeschichte der Wirbeltierlunge. (Amphibien, Reptilien, Vögel, Säuger). Arch Mikrosk Anat Entwicklungsmech 60:587–668

    Google Scholar 

  • Motoyama J, Liu J, Mo R, Ding Q, Post M, Hui CC (1998) Essential function of Gli-2 and Gli-3 in the formation of lung, trachea and oesophagus. Nat Genet 20:54–57

    PubMed  CAS  Google Scholar 

  • Moura RS, Coutinho-Borges JP, Pacheco AP, deMota PO, Correia-Pinto J (2011) Faf signding pathway in the developing chick lung: expression and inhibition studies. PLoS One 6(3):e17660. doi:10.1371/journal.pone.0017660

    Google Scholar 

  • Mouroy B, Filoche M, Weibel ER, Sapoval B (2004) An optimal bronchial tree may be dangerous. Nature (London) 427:633–636

    Google Scholar 

  • MSB (2009) Mosby's medical dictionary, 8th edn. Elsevier, Ansterdam

    Google Scholar 

  • Munshi JSD (1976) Gross and fine structure of the respiratory organs of air-breathing fishes. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic, London, pp 73–102

    Google Scholar 

  • Munshi JSD, Hughes GM, Gehr P, Weibel ER (1989) Structure of the air-breathing organs of a swamp mud eel, Monopterus cuchia. Jpn J Ichthyol 35:453–465

    Google Scholar 

  • Muraoka RS, Bushdid PB, Brantley DM, Yull FE, Kerr LD (2000) Mesenchymal expression of nuclear factor-kappaβ inhibits epithelial growth and branching in the embryonic chick lung. Dev Biol 225:322–338

    PubMed  CAS  Google Scholar 

  • Murphy D (2007) To follow the water: exploring the ocean to discover climate. Basic Books, London

    Google Scholar 

  • Murray CD (1926) The physiological principle of minimum work. I. The vascular system and the cost of blood flow. Proc Natl Acad Sci USA 12:207–214

    PubMed  CAS  Google Scholar 

  • Mustafa AK, Gadalla MM, Snyder SH (2009a) Signaling by gasotransmitters. Sci Signal 2(68): re2.doi10.1126/scisignal.268re2(2009)

    Google Scholar 

  • Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W et al. (2009b) H2S signals through protein S-sulfhydration. Sci Signal 10:2(96):ra72

    Google Scholar 

  • Myat MM, Lightfoot H, Wang P, Andrew DJ (2005) A molecular link between FGF and Dpp signaling in branch-specific migration of the Drosophila trachea. Dev Biol 281:38–52

    PubMed  CAS  Google Scholar 

  • Nahas GG (1962) The pharmacology of tris (hydroxymethyl) methane (THAM). Pharmacol Rev 14:447–472

    PubMed  CAS  Google Scholar 

  • Nakao T (1974) The fine structure and innervation of gill lamellae in Anodonta. Cell Tissue Res 157:239–254

    Google Scholar 

  • Nakao A, Kobayashi E, Tanaka N, Murase N (2004) Protective effect of carbon monoxide for organ injury. Nippon Geka Gakkai Zasshi 105:309–313

    PubMed  Google Scholar 

  • Nakao A, Choi AM, Murase N (2006) Protective effect of carbon monoxide in transplantation. J Cell Mol Med 10:650–671

    PubMed  CAS  Google Scholar 

  • Nambu JR, Lewis JO, Wharton KA, Crews ST (1991) The Drosophila single-minded gene encodes a helix-loop-helix-protein that acts as a master regulator of CNS midline development. Cell 67:1157–1167

    PubMed  CAS  Google Scholar 

  • Nambu JR, Chen W, Hu S, Crews ST (1996) The Drosophila melanogaster similar bHLH-PAS gene encodes a protein related to human hypoxia-inducible factor-1α and Drosophila single-minded. Gene 172:249–254

    PubMed  CAS  Google Scholar 

  • Narahara AB, Bergman HL, Maina JN, Laurent P, Walsh PJ, Wood CM (1996) Respiratory physiology of the Lake Magadi Tilapia (Oreochromis alcalicus grahami), a fish adapted to a hot, alkaline, and frequently hypoxic environment. Physiol Zool 66:1114–1136

    Google Scholar 

  • Narbonne GM (2011) When life got big. Nature (London) 470:330–340

    Google Scholar 

  • Nathan CF, Cohn ZA (1981) Antitumour effects of hydrogen peroxide in vivo. J Exp Med 154:1539–1555

    PubMed  CAS  Google Scholar 

  • Nathan CF, Xie QW (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78:915

    PubMed  CAS  Google Scholar 

  • Ndengele MM, Muscoli C, Wang ZQ, Doyle TM, Matuschak GM, Salvemini D (2005) Superoxide potentiates NF-кB activation and modulates endotoxin-induced cytokine production in alveolar macrophages. Shock 23:186–193

    PubMed  CAS  Google Scholar 

  • Neftel A, Moor E, Oeschger H, Stauffer B (1985) Evidence from polar ice cores for the increase in atmospheric carbon dioxide in the past two centuries. Nature (London) 315:45–47

    CAS  Google Scholar 

  • Nelson WJ, Nusse R (2004) Convergence of Wnt, β-catenin, and Cadherin pathways. Science 303:1483–1487

    PubMed  CAS  Google Scholar 

  • Nelson TR, West BJ, Goldberger AL (1990) The fractal lung: universal and species related scaling patterns. Experientia 46:251–254

    PubMed  CAS  Google Scholar 

  • Neubauer JA, Sunderram J (2004) Oxygen-sensing neourons in the central nervous sytem. J Appl Physiol 96:367–374

    PubMed  CAS  Google Scholar 

  • Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor VEGF) and its receptors. FASEB J 13:9–22

    PubMed  CAS  Google Scholar 

  • Nevo E (1979) Adaptive convergence and divergence of subterranean mammals. Ann Rev Ecol Syst 10:269–308

    Google Scholar 

  • Newell RC, Courtney WAM (1965) Respiratory movements in Holothuria forskali. J Exp Biol 42:45–57

    CAS  Google Scholar 

  • Ng YS, Rohan R, Sunday ME, Demello DE, D’Amore PA (2001) Differential expression of VEGF isoforms in mouse during development and in the adult. Dev Dyn 220:112–121

    PubMed  CAS  Google Scholar 

  • Nganpiep L, Maina JN (2002) Composite cellular defense stratagem in the avian respiratory system: functional morphology of the free (surface) macrophages and specialized pulmonary epithelia. J Anat 200:499–516

    PubMed  CAS  Google Scholar 

  • Nguyen BT, Peterson PK, Verbrigh HA, Quie PG, Oídla JR (1982) Differences in phagocytosis and killing by alveolar macrophages from humans, rabbits, rats, and hamsters. Infect Immun 36:504–509

    PubMed  CAS  Google Scholar 

  • Nguyen-Phu D, Yamaguchi K, Scheid P, Piiper J (1986) Kinetics of oxygen uptake and release by red blood cells of the chicken. J Exp Biol 125:15–27

    PubMed  CAS  Google Scholar 

  • Nicholas TE (1996) Pulmonary surfactant: no mere paint on the alveolar wall. Respirology 4:247–257

    Google Scholar 

  • Nicholson WL (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    PubMed  CAS  Google Scholar 

  • Nicloux M (1923) Action de l'oxyde de carbone sur les poissons et capacite respiratoire du sang de ces animaux. Cr Blanc Soc Biol 89:1328–1331

    CAS  Google Scholar 

  • Nicod L (2005) Lung defences: an overview. Eur Respir Rev 95:45–50

    Google Scholar 

  • Nijkamp FP, van der Linde HJ, Folkerts G (1993) Nitric oxide synthesis inhibitors induce airway hyperresponsiveness in the guinea pig in vivo and in vitro. Am Rev Respir Dis 148:727–734

    PubMed  CAS  Google Scholar 

  • Nikinmaa M (1990) Vertebrate red blood cells: adaptation of function to respiratory requirements. Springer, Berlin

    Google Scholar 

  • Nikinmaa M, Rees BB (2005) Oxygen dependent gene expression in fishes. Am J Physiol Regul Integr Comp Physiol 288:R1079–R1090

    PubMed  CAS  Google Scholar 

  • Nilson G (2010) Surviving without oxygen. In: Nilson GE (ed) Respiratory physiology of vertebrates: life without oxygen. Cambridge University Press, Cambridge, pp 301–328

    Google Scholar 

  • Nilsson S (1985) Filament position in fish gills is influenced by a smooth muscle innervated by energetic nerves. J Exp Biol 118:433–437

    Google Scholar 

  • Nilsson S (1994) The crocodilian heart and central hemodynamics. Cardioscience 5:163–166

    PubMed  CAS  Google Scholar 

  • Nisbet EG, Nisbet ER (2008) Methane, oxygen, photosynthesis, rubisco and the regulation of the air through time. Phil Trans R Soc Lond B Biol Sci 363:2745–2754

    CAS  Google Scholar 

  • Nisbet UG, Cann JR, van Dover CL (1995) Origins of photosynthesis. Nature (London) 373:479–480

    CAS  Google Scholar 

  • Nisbet EG, Grassineau NV, Howe CJ, Abell PI, Regelous M, Nisbet RER (2007) The age of RubisCO: the evolution of oxygenic photosynthesis. Geobiology 5:311. doi:10.1111/j.1472-4669.2007.00127.x

    CAS  Google Scholar 

  • Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C et al (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–899

    PubMed  CAS  Google Scholar 

  • Nisoli E, Falcone S, Tonello C, Cozzi V, Palomba L et al (2004) Mitochondrail biogenesis by NO yields functionally active mitochondria in mammals. Proc Natl Acad Sci USA 101:16507–16512

    PubMed  CAS  Google Scholar 

  • Noble GK (1925) Integumentary, pulmonary, and cardiac modifications correlated with increased cutaneous respiration in the amphibian: a solution to the `hairy frog' problem. J Morph Physiol 40:341–416

    Google Scholar 

  • Noble GK (1937) The biology of amphibia. McGraw-Hill, New York

    Google Scholar 

  • Noda Y, Mori A, Liburdy R, Packer L (1998) Melatonin and its precursors exhibit nitric oxide scavenging. Pathophysiology 5(suppl 1):85

    Google Scholar 

  • Nogee LM (2004) Alterations in SP-B and SP-C expression in neonatal lung disease. Annu Rev Physiol 66:601–623

    PubMed  CAS  Google Scholar 

  • Northcutt RG (1990) Ontogeny and phylogeny: a reevaluation of conceptual relationships and some applications. Brain Behav Evol 36:116–140

    PubMed  CAS  Google Scholar 

  • Northcutt RG, Gans C (1983) The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Q Rev Biol 58:1–28

    PubMed  CAS  Google Scholar 

  • Northway WH, Rossan RC (1968) Radiographic features of pulmonary oxygen toxicity in the newborn: bronchopulmonary dysplasia. Radiology 91:49–57

    PubMed  Google Scholar 

  • Novikov CN, Vilenskaya ND, Asfaramov RR, Leontieva OA, Voeikov VL (2000) Low level chemiluminescence reflects involvement of reactive oxygen species in the regulation of the blood cells interactions. Riv Biol Forum 93:152–154

    Google Scholar 

  • Nunn JF (1998) Evolution at the atmosphere. Proc Geol Assoc 109:1–13

    PubMed  CAS  Google Scholar 

  • Nurse CA, Buttigieg J, Thompson R, Zhang M, Cutz E (2006) Oxygen sensing in neuroepithelial and adrenal chromaffin cells. Novartis Found Symp 272:106–114

    PubMed  CAS  Google Scholar 

  • Nussbaum RA, Wilkinson M (1995) A new genus of lungless tetrapod: a radically divergent caecilian (Amphibia: Gymnophiona). Proc R Soc Lond B Biol Sci 261:331–335

    Google Scholar 

  • Nusse R, Varmus HE (1992) Wnt genes. Cell 69:1073–1087

    PubMed  CAS  Google Scholar 

  • O’Brien KM, Sidell BD (2000) The interplay among cardiac ultrastructure, metabolism and the expression of oxygen-binding proteins in Antarctic fishes. J Exp Biol 203:1287–1297

    PubMed  Google Scholar 

  • O’Brien KM, Xue H, Sidell BD (2000) Quantification of diffusion distance within the spongy myocardium of hearts from Antarctic fishes. Respir Physiol 122:71–80

    PubMed  Google Scholar 

  • O’Connor PM, Claessens LP (2005) Basic avian pulmonary design and flow-through ventilation in non-avian theropod dinosaurs. Nature (London) 436:253–256

    Google Scholar 

  • O’Neil JJ, Sanford RL, Wasserman S, Thierney DF (1977) Metabolism in rat lung tissue slices: technical factors. J Appl Physiol 43:902–906

    PubMed  Google Scholar 

  • O’Reilly MA, Waever TE, Pilot-Matias TJ, Sarin VK, Gadzar AF, Whitsett JA (1989) In vitro. translation, post-translational processing and secretion of pulmonary surfactant protein B precursors. Biochim Biophys Acta 1011:140–148

    PubMed  Google Scholar 

  • Ochs M, Fehrenbach H, Nenadic I, Bando T, Fehrenbach A et al (2000) Preservation of intraalveolar surfactant in a rat lung ischaemia/reperfusion injury model. Eur Respir J 15:526–531

    PubMed  CAS  Google Scholar 

  • Ochs M, Nyengaard JR, Waizy H, Wahlers T, Gundersen JG, Richter J (2001) Alveolar type II cells and the intracellular surfactant pool in the human lung - a stereological approach. Am J Respir Crit Care Med 163:A731

    Google Scholar 

  • Ochs M, Nyengaard JR, Jung A, Knudsen L, Voigt M et al (2004) The number of alveoli in the human lung. Am J Respir Crit Care Med 169:120–124

    PubMed  Google Scholar 

  • O'Dor RK, Webber DM (1991) Invertebrate athletes: trade-offs between transport efficiency and power density in cephalopod evolution. J Exp Biol 160:93–112

    Google Scholar 

  • Odum EP (1945) The heart rate of small birds. Science 101:153–154

    PubMed  CAS  Google Scholar 

  • Ogawa CH (1920) Contributions of the histology of the respiratory spaces of the vertebrate lungs. Am J Anat 27:333–393

    Google Scholar 

  • Oh MJ, Lee BJ, Choi DC (2008) Exhaled nitric oxide measurement is useful for the exclusion of nonasthmatic eosinophilic bronchitis in patients with chronic cough. Chest 134:990–999

    PubMed  CAS  Google Scholar 

  • Ohbayashi N, Shibayama M, Kurotaki Y, Imanishi M, Fujimori T et al (2002) FGF-18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev 16:870–879

    PubMed  CAS  Google Scholar 

  • Ohmer-Schröck D, Schlatterer C, Plattner H, Schlepper-Schäfer J (1995) Lung surfactant protein A (SP-A) activates a phosphoinositide/calcium signaling pathway in alveolar macrophanges. J Cell Sci 108:3695–3702

    PubMed  Google Scholar 

  • Ojha J, Singh SK (1986) Scanning electron microscopy of the gills of a hill-stream fish, Danio dangila (Ham.). Arch Biol Bruxelles 97:455–467

    Google Scholar 

  • Okada Y, Ishiko S, Daido S, Kim J, Ikeda S (1964) Comparative morphology of the lung with special reference to the alveolar epithelial cells. II. Lung of the reptilian. Acta Tuberc Jpn 12:1–10

    Google Scholar 

  • Okino ST, Chichester CH, Whitlock JP (1998) Hypoxia-enducible mammalian gene expression analyzed in vitro at a TATA-driven promoter and at initiator-driven promoter. J Biol Chem 273:23837–23843

    PubMed  CAS  Google Scholar 

  • Olmeda B, Villén L, Cruz A, Orellana G, Perez-Gil J (2010) Pulmonary surfactant layers accelerate O2 diffusion through the air-water interface. Biochim Biophys Acta 1798:1281–1284

    PubMed  CAS  Google Scholar 

  • Olmo E (1991) Genome variations in the transition from amphibians to reptiles. J Mol Evol 33:68–75

    CAS  Google Scholar 

  • Olson KR (2005) Vascular actions of hydrogen sulfide in nonmammalian vertebrates. Antioxid Redox Signal 5–6:804–812

    Google Scholar 

  • Olson KR (2008) Hydrogen sulfide and oxygen sensing: implications in cardiorespiratory control. J Exp Biol 211:2727–2734

    PubMed  CAS  Google Scholar 

  • Olson KR (2009) Is hydrogen sulfide a circulating “gasotrasmitter” in vertebrate blood? Biochim. Biophys Acta 1787:856–863

    CAS  Google Scholar 

  • Olson KR, Donald JA (2009) Nervous control of circulation – the role of gasotransmitters, NO, CO, and H2S. Acta Histochem 111:244–256

    PubMed  CAS  Google Scholar 

  • Olson KR, Whitfield NL (2010) Hydrogen sulfide and oxygen sensing in the cardiovascular system. Antioxid Redox signal 12:1219–1234

    PubMed  CAS  Google Scholar 

  • Olson KR, Roy PK, Ghosh TK, Mushi JSD (1994) Microcirculation of gills and accessory respiratory organs from the air-breathing snakehead fish, Channa punctata, C gachua, and C marulius. Anat Rec 238:92–107

    PubMed  CAS  Google Scholar 

  • Olson KR, Dombkowski RA, Russell M, Doellman MM, Head SK et al (2006) Hydrogen sulfide as an oxygen sensor/tranducer in vertebrate hypoxic vasoconstriction and hypoxic vasodialtion. J Exp Biol 209:4011–4023

    PubMed  CAS  Google Scholar 

  • Olson KR, Forgman LG, Dombkowski RA, Forster ME (2008a) Oxygen dependency of hydrogen sulfide-mediated vasoconatriction in cyclostome aortas. J Exp Biol 14:2205–2213

    Google Scholar 

  • Olson KR, Healy MJ, Qin Z, Skovgaard N, Vulesevic B et al (2008b) Hydrogen sulfide as an oxygen sensor in trout gill chemoreceptors. Am J Physiol Regul Integr Comp Physiol 295:R669–R680

    PubMed  CAS  Google Scholar 

  • Olson KR, Whitfield NL, Bearden SE, St Leger J, Nilson E et al (2010) Hypoxic pulmonary vasodilation: a paradigm shift with a hydrogen sulfide mechanism. Am J Physiol Regul Integr Comp Physiol 298:R51–R60

    PubMed  CAS  Google Scholar 

  • O'Mahoney P, Full RJ (1984) Respiration of crabs in air and water. Comp Biochem Physiol 79A:275–282

    Google Scholar 

  • Ong KJ, Stevens ED, Wright RA (2007) Gill morphology of the mangrove killifish (Kryptolebias marmoratus) is plastic and changes in response to terrestrial air exposure. J Exp Biol 210:1109–1115

    PubMed  CAS  Google Scholar 

  • Oparin AI (1938) The origin of life. Macmillan, New York

    Google Scholar 

  • Opell BD (1987) The influence of web monitoring tactics of the tracheal systems of spiders in the family Uroboridae (Arachnida, Areneida). Zoomorphology 107:255–259

    Google Scholar 

  • Ordway GA, Garry DJ (2004) Myoglobin: an essential hemoprotein in striated muscle. J Exp Biol 207:3441–3446

    PubMed  CAS  Google Scholar 

  • Organ CL, Shedlock AM, Meade A, Pagel M, Edwards SV (2007) Origin of avian genome size and structure in non-avian dinosaurs. Nature (London) 446:180–184

    CAS  Google Scholar 

  • Orgeig S, Daniels CB (2009) Environmental selection pressures shaping the pulmonary surfactant system of adult and developing lungs. In: Glass ML, Wood SC (eds) Cardio-respiratory control in vertebrates. Springer, Berlin, pp 205–239

    Google Scholar 

  • Orgeig S, Daniels CB, Johnston SD, Sullivan LC (2003) The pattern of surfactant cholesterol during vertebrate evolution and development: does ontogeny recapitulate phylogeny? Reprod Fertil Dev 15:55–73

    PubMed  CAS  Google Scholar 

  • Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biol 2: REVIEWS3005

    Google Scholar 

  • Orr-Urtreger A, Bedford MT, Burakova T, Arman E, Zimmer Y et al (1993) Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR-2). Dev Biol 158:475–486

    PubMed  CAS  Google Scholar 

  • Osterberg R (1974) Origins of metal ions in biology. Nature (London) 249:382–383

    CAS  Google Scholar 

  • Otis AB (1954) The work of breathing. Physiol Rev 34:449–458

    PubMed  CAS  Google Scholar 

  • Otterbein LE, Kolls JK, Mantell LL, Cook JL, Alam J, Choi AMK (1999) Exogenous administration of heme oxygenase-1 by gene transfer provides protection against hyperoxia-induced lung injury. J Clin Investig 103:1047–1054

    PubMed  CAS  Google Scholar 

  • Otterbein LE, Bach FH, Alam J, Soares M, Tao LH et al (2000) Carbon monoxide has anti-inflamatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6:422–428

    PubMed  CAS  Google Scholar 

  • Oury TD, Chang L, Markland SL, Crapo JD (1993) Immunocytochemical localization of extracellular superoxide dismutase in human lung. Am Rev Respir Dis 147:A444

    Google Scholar 

  • Owerkowicz T, Elsey RM, Hicks JW (2009) Atmospheric oxygen level affects growth trajectory, cardiopulmonary allometry and metabolic rate in the American alligator (Alligator mississippiensis). J Exp Biol 212:1237–1247

    PubMed  Google Scholar 

  • Oyarzun MJ, Clements JA (1978) Control of lung surfactant by ventilation, adrenergic mediators, and prostaglandins in the rabbit. Am Rev Respir Dis 117:879–891

    PubMed  CAS  Google Scholar 

  • Ozer EA, Kumral A, Ozer E, Duman N, Yilmaz O, Ozkal S, Ozkan H (2005) Effect of retinoic acid on oxygen-induced lung injury in the newborn rat. Pediatr Pulmonol 39:35–40

    PubMed  Google Scholar 

  • Öztay F (2000) Morphology of lung of Rana ridibunda with observations on changes occurring under different conditions. Turk J Zool 24:263–270

    Google Scholar 

  • Pacht ER, Avis WB (1988) Role of transferring and ceruloplasmin in antioxidant activity of lung epithelial lining fluid. J Appl Physiol 64:2092–2099

    PubMed  CAS  Google Scholar 

  • Packard A (1972) Cephalopods and fish: the limits of convergence. Biol Rev 47:241–307

    CAS  Google Scholar 

  • Padmanabhan RV, Gpdapaty R, Liener IE, Schwatz BA, Hoidal JR (1985) Protection against pulmonary oxygen toxicity in rats by intratracheal administration of liposome-encapsulated superoxide dismutase or catalase. Am Rev Respir Dis 132:164–167

    PubMed  CAS  Google Scholar 

  • Pae HO, Oh GS, Choi BM, Chae SC, Kim YM et al (2004) Carbon monoxide produced by heme oxygenase-1 suppresses T cell proliferation via inhibition of IL-2 production. J Immunol 172:4744–4751

    PubMed  CAS  Google Scholar 

  • Pae HO, Lee YC, Jo EK, Chung HT (2009) Subtle interplay of endogenous bioactive gases (NO, CO and H2S) in inflammation. Arch Pharm Res 32:1155–1162

    PubMed  CAS  Google Scholar 

  • Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxation factor. Nature (London) 327:524–526

    CAS  Google Scholar 

  • Palmer RM, Gaston B, Johns RA (2000) Normoxic stabilization of hypoxia inducible factor-1 expresssion and activity: redox-dependent effect of nitrogen oxides. Mol Pharmacol 58:1197–1203

    PubMed  CAS  Google Scholar 

  • Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A et al (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci USA 106:21972–21977

    PubMed  CAS  Google Scholar 

  • Paraskakis E, Brindicci C, Fleming L, Krol R, Kharitonov SA et al (2006) Measurement of bronchial and alveolar nitric oxide production in normal children and children with asthma. Am J Respir Crit Care Med 174:260–267

    PubMed  CAS  Google Scholar 

  • Park JE, Keller GA, Ferrara N (1993) The vascular endothelial growth factor (VEGF) isoforms: differential deposition in the subepithelial extracellular matrix and bioactivity of extracellular matrix bound VEGF. Mol Biol Cell 4:1317–1326

    PubMed  CAS  Google Scholar 

  • Park WY, Miranda B, Lebeche D, Hashimoto G, Cardoso WV (1998) FGF-10 is a chemotactic factor for distal epithelial buds during lung development. Dev Biol 201:125–134

    PubMed  CAS  Google Scholar 

  • Park S, Dadak AM, Hasse VH, Fontana L, Giaccia AJ, Johnson RS (2003) Hypoxia-induced gene expression occurs solely through the action of hypoxia-inducible factor-1α (HIF-1α): role of cytoplasmic trapping of HIF-2α. Mol Cell Biol DOI:. doi:10.1128/MCB.23.14.4959-4971.2003: 4959-4971

    Google Scholar 

  • Parker TA, le Cras TD, Kinsella JP, Abman SH (2000) Developmental changes in endothelial nitric oxide synthetase expression and activity in ovine fetal lung. Am J Physiol Lung Cell Mol Physiol 78:L203–L208

    Google Scholar 

  • Parnell J, Boyce AJ, Mark D, Bowden S, Spinks S (2010) Early oxygenation of the terrestrial environment during the Mesoproterozoic. Nature (London) 468:290–293

    CAS  Google Scholar 

  • Pastor LM (1995) The histology of the reptilian lung. In: Pastor L (ed) Histology, ultrastructure and immunohistochemistry of the respiratory organs in non-mammalian vertebrates. Publiciones Universidad de Murcia 1995, Murcia, pp 131–153

    Google Scholar 

  • Pastor LM, Pascual AG (1995) The extrapulmonary airways in Amphibians. In: Pastor L (ed) Histology, ultrastructure and immunohistochemistry of the respiratory organs in non-mammalian vertebrates. Publiciones Universidad de Murcia 1995, Murcia, Spain, pp 59–69

    Google Scholar 

  • Pastor LM, Ballesta J, Castells MT, Perez-Tomas R, Martin JA, Madrid JF (1989) A microscopic study of the lung of Testudo graeca. J Anat 162:19–33

    Google Scholar 

  • Patan S (2004) Vasculogenesis and angiogenesis. Cancer Treat Res 117:3–32

    PubMed  CAS  Google Scholar 

  • Patient RK, McGhee JD (2002) The GATA family (vertebrates and invertebrates). Curr Opin Genet Dev 12:416–422

    PubMed  CAS  Google Scholar 

  • Pattle RE (1955) Properties, function and origin of alveolar lining layer. Nature (London) 175:1125–1126

    CAS  Google Scholar 

  • Pattle RE (1976) The lung surfactant in the evolutionary tree. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic, London, pp 233–255

    Google Scholar 

  • Pattle RE (1978) Lung surfactant and lung lining in birds. In: Piiper J (ed) Respiratory function in birds, adult and embryonic. Springer, Berlin, pp 23–32

    Google Scholar 

  • Pattle RE, Shock C, Creasly JM, Hughes GM (1977) Surpellic films, lung surfactant, and their cellular origin in the newt, caecilian and frog. J Zool (London) 182:125–136

    Google Scholar 

  • Paul RJ (1992) Gas exchange, circulation and energy metabolism in spiders. In: Wood SC, Weber RE, Hargens AR, Millard RW (eds) Physiological adaptations in vertebrates: respiration, circulation, and metabolism. Marcel, New York, pp 169–197

    Google Scholar 

  • Paul R, Fincke T, Linzen B (1987) Respiration in the tarantula Eurypelma californicum: evidence of diffusion lungs. J Comp Physiol B 157:209–217

    Google Scholar 

  • Pavelka M, Roth J (2005) Functional ultrastructure: atlas of tissue biology and pathology. Springer, New York

    Google Scholar 

  • Pavlov NA, Krivchenko AT, Cherepivskaya EN, Zagvazdin YS, Zayat ND (1987) Reactivity of cerebral vessels in the pigeon, Columba livia. J Evol Biochem Physiol 23:447–451

    Google Scholar 

  • Payne JL, Boyer AG, Brown JH, Finnegan S, Kowalewski M et al (2009) Two phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proc Natl Acad Sci USA 106:24–27

    PubMed  CAS  Google Scholar 

  • Payne JL, McLain CR, Boyer AG, Brown JH, Finnegan S, Kowalewski M et al (2010) The evolutionary consequences of oxygenic photosynthesis: a body size perspective. Photosynth Res 107:37–57

    PubMed  Google Scholar 

  • Pearman GI, Etheridge D, De Silva F, Fraser PJ (1986) Evidence of changing concentrations of atmospheric CO2, N2O and CH4 from air bubbles in Antarctic ice. Nature (London) 320:248–250

    CAS  Google Scholar 

  • Pearson RJ, Wilson T, Wang R (2006) Endogenous hydrogen sulfide and the cardiovascular system – what’s the smell all about. Clin Invest Med 29:146–150

    PubMed  CAS  Google Scholar 

  • Pechkovsky DV, Zissel G, Stamme C, Goldmann T, Ari-Jaffe H et al (2002) Human alveolar epithelial cells induce nitric oxide synthetase-2 expression in alveolar macrophages. Eur Respir J 19:672–683

    PubMed  CAS  Google Scholar 

  • Pedley TJ, Schroter RC, Sudlow MF (1970) The prediction of pressure drop and variation of resistance within the human bronchial airways. Respir Physiol 9:387–405

    PubMed  CAS  Google Scholar 

  • Pegg JH, Horner TL, Wahrenbrock EA (1963) Breathing of pressure-oxygenated liquids. Proc 2nd Symp Underwater Physiol, Natl Acad Sci Natl Res Council Publ 1191, pp 166–170

    Google Scholar 

  • Pelster B, Scheid P (1992) Counter-current concentration and gas secretion in the fish swimbladder. Physiol Zool 65:1–16

    Google Scholar 

  • Pen I, Uller T, Feldmeyer B, Harts A, While GM, Wapstra E (2010) Climate – driven population divergence in sex-determining systems. Nature (London) 468:436–438

    CAS  Google Scholar 

  • Penden DB, Hohman R, Brown ME, Mason RT, Berkebile C, Fales HM, Kaliner MA (1990) Uric acid in a major antioxidant in human nasal airway secretions. Proc Natl Acad Sci USA 87:7638–7642

    Google Scholar 

  • Peng YJ, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla MM, Kumar GK, Snynder SH, Prabhakar NR (2010) H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci USA 107:10719–10724

    PubMed  CAS  Google Scholar 

  • Penney DG, Tucker A, Bambach GA (1992) Heart and lung alterations in neonatal rats exposed to CO or high altitude. J Appl Physiol 73:1713–1719

    PubMed  CAS  Google Scholar 

  • Pennycuick CJ (1992) Newtonian rules in biology. Oxford University Press, New York

    Google Scholar 

  • Pepicelli CV, Lewis P, McMahon A (1998) Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol 8:1083–1086

    PubMed  CAS  Google Scholar 

  • Pepke-Zaba J, Higenbottam TW, Dinh-Xuan AT, Stone D, Wallwork J (1991) Inhaled nitric oxide as a cause of selective pulmonary vasodilation in pulmonary hypertension. Lancet 338:1173–1174

    PubMed  CAS  Google Scholar 

  • Perez-Gil J (2008) Structure of pulmonary surfactant membranes and films: the role of proteins and liquid-protein interactions. Biochim Biophys Acta 1778:1676–1695

    PubMed  CAS  Google Scholar 

  • Perez-Vizcaino F, Collogudo A, Moreno L (2010) Reactive oxygen species signaling in pulmonary vascular smooth muscle. Respir Physiol Neurobiol 174:212–220

    PubMed  CAS  Google Scholar 

  • Perkins WJ, Pabelick C, Warner DO, Jones KA (1998) cGMP-independent mechanism of airway smooth muscle relaxation induced by S-nitrosoglutathione. Am J Physiol Cell Physiol 275:C468–C474

    CAS  Google Scholar 

  • Perry SF (1978) Quantitative anatomy of the lungs of the red-eared turtle, Pseudeyms scipta elegans. Respir Physiol 35:245–262

    PubMed  CAS  Google Scholar 

  • Perry SF (1981) Morphometri analysis of pulmonary structure: methods for evaluation of unicameral lungs. Microscopie 38:278–293

    CAS  Google Scholar 

  • Perry SF (1983) Reptilian lungs: functional anatomy and evolution. Adv Anat Embryol Cell Biol 79:1–81

    PubMed  CAS  Google Scholar 

  • Perry SF (1988) Functional morphology of the lungs of the Nile crocodile, Crocodylus niloticus: non-respiratory parameters. J Exp Biol 143:99–117

    Google Scholar 

  • Perry SF (1989) Mainstreams in the evolution of vertebrate respiratory structures. In: King AS, McLelland J (eds) Form and function in birds, vol V. Academic, London, pp 1–67

    Google Scholar 

  • Perry SF (1990) Gas exchange strategies in the Nile crocodile: a morphometric study. J Comp Physiol B 159:761–769

    Google Scholar 

  • Perry SF (1992a) Evolution of the lung and its diffusing capacity. In: Bicudo JPW (ed) Vertebrate gas transport cascade adaptations to environment and mode of life. CRC Press, Boca Raton, FL, pp 142–153

    Google Scholar 

  • Perry SF (1992b) Gas exchange strategies in reptiles and the origin of the avian lung. In: Wood SC, Weber RE, Hargens AR, Millard RW (eds) Physiological adaptations in vertebrates: respiration, circulation, and metabolism. Marcel, New York, pp 149–167

    Google Scholar 

  • Perry SF (1997) The chloride cell: structure and function in the gills of freshwater fishes. Annu Rev Physiol 59:325–347

    PubMed  CAS  Google Scholar 

  • Perry SF (1998a) Relationships between branchial chloride cells and gas transfer in freshwater fish. Comp Biochem Physiol A Mol Integr Physiol 119:9–16

    PubMed  CAS  Google Scholar 

  • Perry SF (1998b) Lungs: comparative anatomy, functional morphology, and evolution. In: Gans C, Gaunt AS (eds) Biology of the reptilia, vol 19, Society for the study of amphibians and reptiles. Ithaca, New York, pp 1–92

    Google Scholar 

  • Perry SF (2001) Functional morphology of the reptilian and avian respiratory systems and its implications for theropod dinosaurs. In: Gauthier J, Gall LF (eds) New perspectives on the origin and early evolution of birds. Peabody Museum of Natural History, New Haven, CT, pp 429–441

    Google Scholar 

  • Perry SF, Duncker HR (1978) Lung architecture, volume and static mechanics in five species of lizards. Respir Physiol 34:61–81

    PubMed  CAS  Google Scholar 

  • Perry SF, Duncker HR (1980) Interrelationship of static mechanical factors and anatomical structure in lung ventilation. J Comp Physiol 138:321–334

    Google Scholar 

  • Perry SF, Gilmour KM (2002) Sensing and transfer of respiratory gases at the fish gill. J Exp Zool 293:249–263

    PubMed  Google Scholar 

  • Perry SF, Laurent P (1990) The role of carbonic anhydrase in carbon dioxide excretion, acid base balance and ionic regulation in aquatic gill breathers. In: Truchot JP, Lahlou B (eds) Transport, respiration and excretion: comparative and environmental aspects. Karger, Basel, pp 39–67

    Google Scholar 

  • Perry SF, McDonald G (1993) Gas exchange. In: Evans DH (ed) The physiology of fishes. CRC Press, Boca Raton, FL, pp 251–278

    Google Scholar 

  • Perry SF, Reid SG (2002) Cardiorespiratory adjustments during hypercarbia in rainbow trout Onchorhynchus mykiss are initiated by external CO2 receptors on the first gill arch. J Exp Biol 205:3357–3365

    PubMed  CAS  Google Scholar 

  • Perry SF, Sander M (2004) Reconstructing the evolution of the respiratory apparatus in tetrapods. Respir Physiol Neurobiol 114:125–139

    Google Scholar 

  • Perry SF, Bauer AM, Russell AP, Alston JT, Maloney JE (1989a) Lungs of the gecko, Rhacodactylus leachianus (Reptilia; Gecckonidae): a correlative gross anatomical and light and electron microscopic study. J Morphol 199:23–46

    PubMed  CAS  Google Scholar 

  • Perry SF, Darian-Smith C, Alston D, Limpus CJ, Maloney JE (1989b) Histological structure of the lungs of the loggerhead turtle, Caretta caretta, before and after hatching. Copeia 1989:1000–1010

    Google Scholar 

  • Persson A, Chang D, Rust K, Moxley M, Longmore W, Crouch E (1989) Purification and biochemical characterization of CP4 (SP-D) a collagenous surfactant associated protein. Biochemistry 28:6361–6367

    PubMed  CAS  Google Scholar 

  • Persson A, Chang D, Crouch E (1990a) Surfactant protein D is a divalent cation-dependent carbohydrate-binding protein. J Biol Chem 265:5755–5760

    PubMed  CAS  Google Scholar 

  • Persson MG, Gustafson LE, Wiklund NP, Moncada S, Hedqvist P (1990b) Endogenous nitric oxide as a probable modulator of pulmonary circulation and hypoxic pressor response in vivo. Acta Physiol Scand 140:449–457

    PubMed  CAS  Google Scholar 

  • Peters HM (1978) On the mechanism of air ventilation in anabantoids (Pisces, Teleostei). Zoomorphologie 89:93–124

    Google Scholar 

  • Peters A, Wichmann HE, Tuch T, Heinrich J, Heyder J (1997) Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med 155:1376–1383

    PubMed  CAS  Google Scholar 

  • Petherick A (2010) Salamander’s egg surprise. Nature (London) 466:675

    CAS  Google Scholar 

  • Petschow D, Würdinger I, Baumann R, Duhm J, Braunitzer G, Bauer C (1977) Causes of high blood oxygen affinity of animals living at high altitude. J Appl Physiol 42:139–143

    PubMed  CAS  Google Scholar 

  • Piantadosi CA (2002) Biological chemistry of carbon monoxide. Antoxid Redox Signal 4:259–270

    CAS  Google Scholar 

  • Piantadosi CA (2008) Carbon monoxide, reactive oxygen signaling, and oxidative stress. Free Radic Biol Med 45:562–569

    PubMed  CAS  Google Scholar 

  • Pieri C, Marra M, Moroni F, Recchioni R, Marcheselli F (1994) Melatonin: a peroxyl radical scavenger more effective than vitamin E. Life Sci 55:271–276

    Google Scholar 

  • Piiper J, Scheid P (1980) Blood-gas equilibration in lungs. In: West JB (ed) Pulmonary gas exchange, vol I. Academic, New York, pp 121–171

    Google Scholar 

  • Piiper J, Scheid P (1992) Modeling of gas exchange in vertebrate lungs, gills, and skin. In: Wood SC, Weber RE, Hargens AR, Millard RW (eds) Physiological adaptations in vertebrates: respiration, circulation, and metabolism. Marcel, New York, pp 69–95

    Google Scholar 

  • Piiper J, Gatz RN, Crawford EC (1976) Gas transport characteristics in an exclusively skin breathing salamander, Desmognathus fuscus (Plethodontidae). In: Hughes GM (ed) Respiration in amphibious vertebrates. Academic, London, pp 339–356

    Google Scholar 

  • Pijnenburg MW, Holhuis W, Hop WC, De Jongste JC (2005) Exhaled nitric oxide predicts asthma relapse in children with clinical asthma remission. Thorax 60:215–218

    PubMed  CAS  Google Scholar 

  • Pilson ME (1965) Variation of hemocyanin concentration in the blood of four species of haliotis. Biol Bull 128:459–472

    CAS  Google Scholar 

  • Pinder AW, Storey KB, Ultsch GR (1992) Hibernation and estivation. In: Feder ME, Burggren WW (eds) Environmantal physiology of amphibians. University of Chicago Press, Chicago, IL, pp 250–274

    Google Scholar 

  • Pinkerton KE, Joad JP (2000) The mammalian respiratory system and critical windows of exposure for children’s health. Environ Health Perspect 108:457–462

    PubMed  Google Scholar 

  • Pinkerton KE, Barry BE, O'Neil JJ, Raus JA, Pratt PC, Crapo JD (1982) Morphologic changes in the lung during the lifespan of Fischer 344 rats. Am J Anat 164:155–174

    PubMed  CAS  Google Scholar 

  • Pinshaw B, Bernstein MH, Arad Z (1985) Effects of temperature and PCO2 on O2 affinity of pigeon blood: implications for brain O2 supply. Am J Physiol 249:R759–R764

    Google Scholar 

  • Piotrowski WJ, Marczk J (2000) Cellular sources of oxidants in the lung. Int J Occup Med Environ Health 13:369–385

    PubMed  CAS  Google Scholar 

  • Pisam M, Ranbourg A (1991) Mitochondria-rich cells in the gill epithelium of teleost fishes: an ultrastructural approach. Int Rev Cytol 130:235–244

    Google Scholar 

  • Pison U, Max M, Neuendank A, Weissbach S, Pietschmann S (1994) Host defence capabilities of pulmonary surfactant: evidence for ‘non-surfactant’ fnctions of the surfactant system. Eur J Clin Invest 24:586–599

    PubMed  CAS  Google Scholar 

  • Plasencia I, Rivas L, Casals C, Keough KM, Perez-Gil J (2001) Intrinsic structural differences in the N-terminal segment of pulmonary surfactant protein SP-C from different species. Comp Biochem Physiol A 129:129–139

    CAS  Google Scholar 

  • Pohunková H, Hughes GM (1985) Structure of the lung of the clawed toad (Xenopus laevis Daudin). Folia Morphol XXXIII:385–390

    Google Scholar 

  • Polimanti O (1912) Überden Beginn der Atmung bei Embryonen von Scyllium. Z Biol 57:237–272

    Google Scholar 

  • Polimanti O (1913) Sui rapporti fra peso del corpo e ritmo respiratoria di Octopus vulgaris Lam. Z Allgem Physiol 15:449–455

    Google Scholar 

  • Pollock GH, Stein SN, Gyarfas K (1949) Central inhibitory effects of carbon dioxide III. Man Proc Soc Exper Biol Med 70:291–292

    CAS  Google Scholar 

  • Pong WW, Eldred WD (2009) Interactions of the gaseous neuromodulators nitric oxide, carbon monoxide, and hydrogen sulfide in the salamander retina. J Neurosci Res 87:2356–2364

    PubMed  CAS  Google Scholar 

  • Poole TJ, Finkelstein EB, Cox CM (2001) The role of FGF and VEGF in angioblast induction and migration during vascular development. Dev Dyn 200:1–17

    Google Scholar 

  • Porter RK, Brand M (1995) Mitochondrial proton conductance and H+/O ratio are independent of electron transport rate in isolated hepatocytes. Biochem J 310:379–382

    PubMed  CAS  Google Scholar 

  • Portier P (1933) Locomotion aérienne et respiration des lépidoptéres, un nouveau rôle physiologique des ailes et des écailles. Trav V Congr intern Ent Paris 2:25–31

    Google Scholar 

  • Possmayer F (1988) A proposed nomenclature for pulmonary surfactant-associated proteins. Am Rev Respir Dis 138:990–998

    PubMed  CAS  Google Scholar 

  • Post M, Greenwald L, Stetson D (1990) Cellular basis of an avian countercurrent multiplier system. J Morphol 206:1–11

    PubMed  CAS  Google Scholar 

  • Post M, Souza P, Liu J, Tseu I, Wang J, Kuliszewski M, Tanswell AK (1996) Keratinocyte growth factor and its receptor are involved in regulating early lung branching. Development 122:3107–3115

    PubMed  CAS  Google Scholar 

  • Pough FH (1980) Blood oxygen transport and delivery in reptiles. Am Zool 31:455–456

    Google Scholar 

  • Pough FH, Heiser JB, McFarland WN (1989) Vertebrate life, 3rd edn. Macmillan, New York

    Google Scholar 

  • Powell MA, Arp AJ (1989) Hydrogen sulfide oxidation by abundant nonhemoglobin heme compounds to marine invertebrates from sulfide rich habitats. J Exp Zool 249:121–132

    CAS  Google Scholar 

  • Powell FL, Hopkins SR (2004) Comparative physiology of lung complexity: implications for gas exchange. News Physiol Sci 19:55–60

    PubMed  Google Scholar 

  • Powell FL, Mazzone RW (1983) Morphometrics of rapidly frozen goose lungs. Respir Physiol 51:319–332

    PubMed  CAS  Google Scholar 

  • Powell FL, Scheid P (1989) Physiology of gas exchange in the avian respiratory system. In: King AS, McLelland J (eds) Form and function of the avian lung, vol 4. Academic, London, pp 393–437

    Google Scholar 

  • Powell MA, Somero GN (1985) Sulfide oxidation occurs in the animal tissue of the gutless clam, Solemya reidi. Biol Bull 169:164–181

    CAS  Google Scholar 

  • Powell FL, Hastings RH, Mazzone RW (1985) Pulmonary vascular resistance during unilateral pulmonary artery occlusion in ducks. Am J Physiol 249:R34–R43

    Google Scholar 

  • Powell PP, Wang CC, Horinouchi H, Shephard K, Jacobson M et al (1998) Differential expression of fibroblast growth factor receptors 1 to 4 and ligand genes in late fetal and early postnatal rat lung. Am J Respir Cell Mol Biol 19:563–572

    PubMed  CAS  Google Scholar 

  • Powell-Coffman JA, Coffman CR (2010) Lack of oxygen aids cell survival. Nature (London) 465:554–555

    CAS  Google Scholar 

  • Power JHT, Doyle IR, Davidson K, Nicholas TE (1999) Ultrastructural and protein analysis of surfactant in the Australian lungfish Neoceratodus forsteri: evidence for conservation of composition for 300 million years. J Exp Biol 202:2543–2550

    PubMed  CAS  Google Scholar 

  • Powers DA, Fyhn HJ, Fyhn UEH, Martin JP, Garlick RL, Wood SC (1979) A comparative study of the oxygen equilibria of blood from 40 genera of Amazonian fishes. Comp Biochem Physiol 62A:67–86

    CAS  Google Scholar 

  • Prabhakar NR, Jacono FJ (2005) Cellular and molecular mechanisms associated with carotid body adaptation to chronic hypoxia. High Alt Med Biol 6:112–120

    PubMed  Google Scholar 

  • Prange HD (1976) Energetics of swimming in a sea turtle. J Exp Biol 64:1–12

    PubMed  CAS  Google Scholar 

  • Prange HD (1996) Respiratory physiology: understanding gas exchange. Chapman and Hall, New York

    Google Scholar 

  • Prasad MS (1988) Morphometrics of gills during growth and development of air-breathing habit in Colisa fasciatus (Bloch and Schneider). J Fish Biol 32:367–381

    Google Scholar 

  • Precht H (1939) Die Lungeatmung der Susswasserpulmonaten. Z Vergl Physiol 26:696–738

    CAS  Google Scholar 

  • Predmore BL, Alendy MJ, Ahmed KI, Leeuwenburgh C, Julian D (2010) The hydrogen sulfide signaling system: changes during aging and the benefits of caloric restriction. Age 32:467–481

    PubMed  CAS  Google Scholar 

  • Prosser CL (1961) Oxygen: respiration and metabolism. In: Prosser CL, Brown FA (eds) Comparative animal physiology. Saunders, Philadelphia, PA, pp 198–287

    Google Scholar 

  • Prosser CL (1973) Comparative animal physiology, 3rd edn. Saunders, Philadelphia, PA

    Google Scholar 

  • Prosser CL, Brown FA (1962) Comparative animal physiology, 2nd edn. WB Saunders, London

    Google Scholar 

  • Proynch S, Wassersug R (1994) Lung use and development in Xenopus laevis tadpoles. Can J Zool 72:738–743

    Google Scholar 

  • Pryor WA, Squadrito GL (1995) The chemistry of peroxynitrite, a product of the reaction of nitric oxide with superoxide. Am J Physiol 268:L699–L722

    PubMed  CAS  Google Scholar 

  • Pryor WA, Houk KN, Foote CS, Fukuto JM, Ignarro LJ et al (2006) Free radical biology and medicine: it’s a gas, man! Am J Physiol Regul Integr Comp Physiol 291:R491–R511

    PubMed  CAS  Google Scholar 

  • Qin Z, Lewis JE, Perry SF (2010) Zebrafish (Danio rerio) gill neuroepithelial cells are sensitive chemoreceptors for rnvironmental CO2. J Physiol 588:861–872

    PubMed  CAS  Google Scholar 

  • Quick DE, Ruben JA (2009) Cardio-pulmonary anatomy in theropod dinosaurs: implications from extant archosaurs. J Morphol 270:1232–1246

    PubMed  Google Scholar 

  • Quinlan MC, Gibbs AG (2006) Discontinuous gas exchange in insects. Respir Physiol Biochem 154:18–29

    CAS  Google Scholar 

  • Radomski MW, Palmer RMJ, Moncada S (1990) An L-arginine: nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA 87:5193–5197

    PubMed  CAS  Google Scholar 

  • Rahn H (1966) Aquatic gas exchange: theory. Respir Physiol 1:1–12

    PubMed  CAS  Google Scholar 

  • Rahn H, Howell BJ (1976) Bimodal gas exchange. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic, London, pp 271–285

    Google Scholar 

  • Rahn H, Rahn KB, Howell BJ, Gans C, Tenney SM (1971) Air-breathing of the garfish, Lepisosteus osseus. Respir Physiol 11:285–307

    PubMed  CAS  Google Scholar 

  • Rajagopal J, Carroll TJ, Guseh JS, Bores SA, Blank L et al (2008) Wnt-7b stimulates embryonic lung growth by co-ordinately increasing the replication of epithelium and mesenchyme. Development 135:1625–1634

    PubMed  CAS  Google Scholar 

  • Ramasamy SK, Mailleux AA, Gupte VV, Mata F, Sala FG et al (2007) FGF-10 dosage is critical for amplification of epithelial cells progenitors and for the formation of multiple mesenchymal lineages during lung development. Dev Biol 307:237–247

    PubMed  CAS  Google Scholar 

  • Rampino MR (2010) Mass extinctions of life and catastrophic flood basalt volcanism. Proc Natl Acad Sci USA 107:6555–6556

    PubMed  CAS  Google Scholar 

  • Randall DJ (1970) Gas exchange in fish. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 4. Academic, London, pp 252–292

    Google Scholar 

  • Randall DJ (1972) Respiration. In: Hardisty MW, Potter IC (eds) The biology of lampreys. Academic, London, pp 287–306

    Google Scholar 

  • Randall DJ, Cameron JN (1973) Respiratory control of arterial pH as temperature changes in rainbow trout, Salmo gairdneri. Am J Physiol 225:997–1002

    PubMed  CAS  Google Scholar 

  • Randall DJ, Jones DR (1973) The effect of deafferentation of the pseudobranch on the respiratory response to hypoxia and hyperoxia in the trout (Salmo gairdneri). Respir Physiol 17:291–301

    PubMed  CAS  Google Scholar 

  • Randall DJ, Burggren WW, Farrell AP, Haswell MS (1981) The evolution of air-breathing in vertebrates. Cambridge University Press, Cambridge

    Google Scholar 

  • Rashevsky N (1960) Mathematical biophysics: physico-mathematical foundations of biology. Dover, New York

    Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Re-assesing the first appearance of eukaryotes and cyanobacteria. Nature (London) 455:1101–1104

    CAS  Google Scholar 

  • Rasnitsyn AP, Quicke DLJ (2002) History of insects. Kluwer, Berlin

    Google Scholar 

  • Raven JA, Cockell CS, La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Phil Trans R Soc Lond B Biol Sci 363:2641–2650

    CAS  Google Scholar 

  • Ravikumar P, Bellotto DJ, Johnson RL, Hsia CC (2009) Permanent alveolar remodeling in canine lung induced by high-altitude residence during maturation. J Appl Physiol 107:1911–1917

    PubMed  Google Scholar 

  • Raynaud D, Barnola JM (1985) An Antarctic ice core reveals atmospheric CO2 variations over the past few centuries. Nature (London) 315:309–311

    CAS  Google Scholar 

  • Rayter SW, Otterbein L (2004) Carbon monoxide in biology and medicine. Bioessays 26:270–280

    Google Scholar 

  • Rayter SW, Norse D, Choi AM (2004) Carbon monoxide: to boldly go where NO has gone. Sci STKE 20(230):RE6

    Google Scholar 

  • Rayter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86:583–650

    Google Scholar 

  • Reese S, Dalamani G, Kaspers B (2006) The avian lung-associated immune system: a review. Vet Res 37:311–324

    PubMed  CAS  Google Scholar 

  • Reich ES (2011) Beyond the stars. Nature (London) 470:24–26

    CAS  Google Scholar 

  • Reichman-Fried M, Shilo BZ (1995) Breathless, a Drosophila FGF receptor homolog, is required for the onsect of tracheal cell migration and tracheole formation. Mech Dev 52:265–273

    PubMed  CAS  Google Scholar 

  • Reichman-Fried M, Dickson B, Hafen E, Shilo BZ (1994) Elucidation of the role of Breathless, a Drosophila FGF receptor homolog, in tracheal cell migration. Genes Dev 8:428–439

    PubMed  CAS  Google Scholar 

  • Reid SG, Perry SF (2003) Peripheral O2 chemoreceptors mediate humoral catecholamine secretion from fish chromaffin cells. Am J Physiol 284:R990–R999

    CAS  Google Scholar 

  • Reid RC, Sherwood TK (1966) The properties of gases and liquids, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Reid ML, Kobzik L, Bredt D, Stamler JS (1998) Nitric oxide modulates excitation-contraction coupling in the diaphragm. Comp Biochem Physiol 119A:211–218

    CAS  Google Scholar 

  • Reid SC, Sundin L, Kalinin AL, Rantin FT, Milsom WK (2000) Cardiovascular and respiratory reflexes in the tropical fish, traira (Hoplias malabaricus): CO2/pH chemoresponses. Respir Physiol 120:47–59

    PubMed  CAS  Google Scholar 

  • Reiffenstein RJ, Hulbert WC, Roth SH (1992) Toxicology of hydrogen sulfide. Ann Rev Pharmacol Toxicol 32:109–134

    CAS  Google Scholar 

  • Reiter RJ, Tan DX, Wen-Bo QI (1998) Suppression of oxygen toxicity by melatonin. Acta Pharmacol Sin 19:575–581

    CAS  Google Scholar 

  • Remesal A, Pedraz C, Feliciano LS, Ludena D (2009) Pulmonary expression of vascular endothelial growth factor (VEGF) and alveolar septation in a newborn rat model exposed to acute hypoxia and recovered under conditions of air or hyperoxia. Histol Histopathol 24:325–330

    PubMed  Google Scholar 

  • Retallack GJ (2002) Carbon dioxide and climate over the past 300 Myr. Phil Trans R Soc Lond A 360:659–673

    CAS  Google Scholar 

  • Revelle R (1982) Carbon dioxide and world climate. Sci Am 247:33–41

    Google Scholar 

  • Revsbech NP, Jørgensen BB, Blackburn PH (1980) Oxygen in the sea bottom measured with microelectrode. Science 207:1355–1356

    CAS  Google Scholar 

  • Ricciardolo FL, Sterk PJ, Gaston B, Folkerts G (2004) Nitric oxide in health and disease of the respiratory system. Physiol Rev 84:731–765

    PubMed  CAS  Google Scholar 

  • Rice S (2004) Human health risk assessment of CO2: survivors of acute high-level exposure and populations sensitive to prolonged low-level exposure. 3rd Ann Conf Carb Sequestr Alexandra, Virginia

    Google Scholar 

  • Rich PR (2003) The molecular machinery of Keilin’s respiratory chain. Biochem Soc Trans 31:1095–1105

    PubMed  CAS  Google Scholar 

  • Richalet JP (1997) Oxygen sensors in the organism: examples of regulation under altitude hypoxia in mammals. Comp Biochem Physiol A Physiol 118:9–14

    PubMed  CAS  Google Scholar 

  • Richard DE, Berra E, Pouyssegur J (2000) Nonhypoxic pathway mediates the induction of hypoxia-inducible factor-1α in vascular smooth muscle cells. J Biol Chem 275:26765–26771

    PubMed  CAS  Google Scholar 

  • Richards AG, Korda FH (1950) Studies on arthropod cuticle. IV. An electron microscope survey of the intima of arthropod tracheae. Ann Entomol Soc Am 43:49–71

    CAS  Google Scholar 

  • Rider ED, Ikegami M, Jobe AH (1990) Intrapulmonary catabolism of surfactant-saturated phosphatidylcholine in rabbits. J Appl Physiol 69:1856–1862

    PubMed  CAS  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature (London) 386:671–674

    CAS  Google Scholar 

  • Rissanen E, Tranberg HK, Sollid J, Nilsson GE, Nikinmaa M (2006) Temperature regulates hypoxia-inducible factor-1 (HIF-1) in a poikilothermic vertebrate, crucian carp (Carassius carassius). J Exp Biol 209:994–1003

    PubMed  CAS  Google Scholar 

  • Rizzi M, Wittenberg JB, Coda A, Ascenzi P (1996) Structural bases for sulfide recognition in Lucina pectinata hemoglobin I. J Mol Biol 258:1–5

    PubMed  CAS  Google Scholar 

  • Roberts JL (1975) Active branchial and ram gill ventilation in fishes. Biol Bull 148:85–105

    PubMed  CAS  Google Scholar 

  • Roberts JL, Rowell DM (1988) Periodic respiration of gill breathing fishes. Can J Zool 66:182–190

    Google Scholar 

  • Roberts GP, Youn H, Kerby RL (2004) CO-sensing mechanisms. Microbiol Mol Biol Rev 68:453–473

    PubMed  CAS  Google Scholar 

  • Robertson CH, Foster GH, Johnson RL (1977) The relationship of respiratory failure to the oxygen consumption of, lactate production by, and distribution of blood flow among respiratory muscles during increasing inspiratory resistance. J Clin Invest 59:31–42

    PubMed  CAS  Google Scholar 

  • Robertson B, Johansson J, Curstedt T (2000) Synthetic surfactants to treat neonatal lung disease. Mol Med Today 6:119–124

    PubMed  CAS  Google Scholar 

  • Robins SP (1988) Functional properties of collagen and elastin. Beillieres Clin Rheumatol 2:1–36

    CAS  Google Scholar 

  • Robinson JM (1991) Global planetary change. 97:51–62

    Google Scholar 

  • Rochette L, Vergely C (2008) Hydrogen sulfide (H2S), an endogenous gas with odor of rotten eggs might be a cardiovascular function regulator. Ann Cardiol Angeiol (Paris) 57:136–138

    CAS  Google Scholar 

  • Rodriquez M, Bur S, Favre A, Weibel ER (1987) Pulmonary acinus: geometry and morphometry of the peripheral airway system in rat and rabbit. Am J Physiol 180:143–155

    Google Scholar 

  • Rogers RM, Cutz E (1978) Innervation and cytochemistry of the neuroepithelial bodies in the ciliated epithelium of the toad lung, Bufo marinus. Cell Tissue Res 195:395–410

    PubMed  CAS  Google Scholar 

  • Rokas A (2008) The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu Rev Genet 42:235–251

    PubMed  CAS  Google Scholar 

  • Roman J, McDonald JA (1992) Expression of fibronectin, the integrin alpha-5, and alpha-smooth muscle actin in the heart, and lung development. Am J Respir Cell Mol Biol 6:472–480

    PubMed  CAS  Google Scholar 

  • Roman J, Crouch EC, McDonald JA (1991) Reagents that inhibit fibronectin matrix assembly of cultured cells also inhibit lung branching morphogenesis in vitro Implications for lung development, injury, and repair. Chest (Suppl) 99:20–21

    Google Scholar 

  • Romer AS (1966) Vertebrate paleontology, 3rd edn. The University of Chicago Press, Chicago, IL

    Google Scholar 

  • Romer AS (1972) Skin breathing – primary or secondary? Respir Physiol 14:183–192

    PubMed  CAS  Google Scholar 

  • Romero NM, Dekanty A, Wappner P (2007) Cellular and developmental adaptations to hypoxia: a Drosophila perspective. Methods Enzymol 435:123–144

    PubMed  CAS  Google Scholar 

  • Romo-Salas F, Aquin L, Searles JM, Banchero N (1978) Oxygen cost of breathing in dogs. Respiration 35:186–191

    PubMed  CAS  Google Scholar 

  • Rooney SA, Young SL, Mendelson CR (1994) Molecular and cellular processing of lung surfactant. FASEB 8:957–967

    CAS  Google Scholar 

  • Rossi-Fanelli A, Antonini E (1957) A new type of myoglobin isolated and crystallized from muscles of Aplysiae. Biochemistry (USSR) 22:312–321

    CAS  Google Scholar 

  • Rossiti S, Löfgren J (1993) Vascular dimensions of the cerebral arteries follow the principle of minimum work. Stroke 24:371–377

    Google Scholar 

  • Roth-Kleiner M, Post M (2005) Similarities and dissimilarities of branching and septation during lung development. Pediatr Pulmonol 40:113–134

    PubMed  Google Scholar 

  • Roughton FJW (1945) The average time spent by the blood in the human lung capillary and its relation to the rate of CO2 uptake and elimination. Am J Physiol 143:621

    CAS  Google Scholar 

  • Roux E (2002) Origin and evolution of the respiratory tract in vertebrates. Rev Mal Respir 19:601–6154

    PubMed  CAS  Google Scholar 

  • Royer WE (1992) Structures of red blood cell hemoglobins. In: Mangum CP (ed) Advances in comparative and environmental physiology, vol 13, Blood and tissue oxygen carriers. Springer, Heidelberg, pp 87–116

    Google Scholar 

  • Rozanek M, Roubik K (2008) Design of the mathematical model of the respiratory system using electron-acoustic analogy. World Acad Sci Eng Technol 47:210–213

    Google Scholar 

  • Rozé JC, Liet JM, Gournay V, Debillon T, Gaultier C (1997) Oxygen cost of breathing and weaning process in newborn infant. Eur Respir J 10:2583–2585

    PubMed  Google Scholar 

  • Ruas JL, Poellinger L (2005) Hypoxia-sependent activation of HIF into a transcriptional regulator. Semin Cell Dev Biol 16:514–522

    PubMed  CAS  Google Scholar 

  • Rugonyi S, Biswas SC, Hall SB (2008) The biophysical function of pulmonary surfactant. Respir Physiol Neurobiol 163:244–255

    PubMed  CAS  Google Scholar 

  • Runnegar B (1991) Precambrian oxygen levels estimated from the biochemistry and physiology of early eukaryotes. Paleogeogr Paleoclimatol Paleoecol 97:97–111

    Google Scholar 

  • Rushner RF (1965) General characteristics of the cardiovascular system. In: Ruch TC, Patton HD (eds) Physiology and biophysics, 19th edn. Saunders, Philadelphia, PA, pp 543–549

    Google Scholar 

  • Russell CW, Evans BK (1989) Cardiovascular anatomy and physiology of the black-lip abalone, Haliotis ruber. J Exp Zool 252:105–117

    Google Scholar 

  • Ruud JT (1954) Vertebrates without erythrocytes and blood pigment. Nature (London) 173:848–850

    CAS  Google Scholar 

  • Ryan HE, Lo J, Johnson RS (1998) HIF-1α is required for solid tumour formation and embryonic vascularization. EMBO 17:3005–3015

    CAS  Google Scholar 

  • Rye R, Kuo PH, Holland HD (1995) Atmospheric carbon dioxide concentrations before 2.2 billion years ago. Nature (London) 378:603–605

    CAS  Google Scholar 

  • Sáenz A, López-Sánchez A, Mojica-Lázaro J, Martínez-Caro L, Nin N et al (2010) Fluidizing effects of c-reactive protein on lung surfactant membranes: protective role of surfactant protein A. FASEB J 24:3662–3673

    PubMed  Google Scholar 

  • Sakai T, Larsen M, Yamada KM (2003) Fibronectin requirement in branching morphogenesis. Nature (London) 423:876–881

    CAS  Google Scholar 

  • Sakiyama J-I, Yamagishi A, Kuroiwa A (2003) Tbx-Fgf10 system controls lung bud formation during chicken embryonic development. Development 130:1225–1234

    PubMed  CAS  Google Scholar 

  • Salazar-Cludad I, Jernvall J, Newman SA (2003) Mechanisms of pattern formation in development and evolution. Development 130:2027–2037

    Google Scholar 

  • Salceda S, Caro J (1997) Hypoxia inducible factor-1a (HIF-1a) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 271:22642–22647

    Google Scholar 

  • Salin ML (1991) Chloroplast and mitochondrial mechanisms for protection against oxygen toxicity. Free Radic Res 13:851–858

    Google Scholar 

  • Salomonsen F (1967) Migratory movements of the Arctic tern (Sterna paradisea pontoppidan) in the Southern Ocean. Det Kgl Danske Vid Selsk Biol Med 24:1–37

    Google Scholar 

  • Saltys HA, Jonz MG, Nurse CA (2006) Comparative study of gill neuroepithelial cells and their innervation in teleosts and Xenopus tadpoles. Cell Tissue Res 323:1–10

    PubMed  Google Scholar 

  • Samakovlis C, Hacohen N, Manning G, Sutherland DC, Guillemin K, Krasnov MA (1996a) Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development 122:1395–1407

    PubMed  CAS  Google Scholar 

  • Samakovlis C, Manning G, Steneberg P, Hacohen N, Cantera R, Krasnov MA (1996b) Genetic control of epithelial tube fusion during Drosophila tracheal development. Development 122:3531–3536

    PubMed  CAS  Google Scholar 

  • Sambe A, Ungureaunu-Longrois D, Danialou G, Lanone S, Benessiano J et al (1998) Role of nitric oxide on diaphragmatic contractile failure in Eschericia coli endotoxemic rats. Comp Biochem Physiol 119:167–175

    CAS  Google Scholar 

  • Sánchez D, Ganfornina MD, Gutiérrez G, Bastiani MJ (1998) Molecular characterization and phylogenetic relationship of a protein with oxygen-binding capabilities in the grass-hopper embryo: a hemocyanin in insects? Mol Biol Evol 15:415–426

    PubMed  Google Scholar 

  • Sandau KB, Zhou J, Kietzmann T, Brune B (2001) Regulation of the hypoxia-inducible factor-1α by the inflammatory mediators nitric oxide and tumour necrosis factor-1α in contrast to desferroxamine and phenyl-arsine oxide. J Biol Biochem 276:39805–39811

    CAS  Google Scholar 

  • Sapoval B, Filoche M, Weibel ER (2002) Smaller is better- but not too small: a physical scale for the design of the mammalian pulmonary acinus. Proc Natl Acad Sci USA 99:10411–10416

    PubMed  CAS  Google Scholar 

  • Sarady JK, Otterbein SL, Liu F, Otterbein LE, Choi AMK (2002) Carbon monoxide modulates endotoxin-induced production of granulocyte macrophage colony-stimulating factor in macrophages. Am J Respir Cell Mol Biol 27:739–745

    PubMed  CAS  Google Scholar 

  • Saran M, Michel C, Mors W (1998) Radical functions in vivo: a critical review of current concepts and hypotheses. Z Naturforsch 53:210–227

    CAS  Google Scholar 

  • Sasaki H, Nishizaki Y, Hui C, Nakafuku M, Kondoh H (1999) Regulation of Gli-2 and Gli-3 primary mediators of SHH signalling. Development 126:3915–3924

    PubMed  CAS  Google Scholar 

  • Sassaman C, Mangum CP (1973) Adaptations to environmental oxygen levels in infaunal sea anemones. Biol Bull Mar Biol Lab (Woods Hole) 143:657–678

    Google Scholar 

  • Satchell GH (1976) The circulatory system of air-breathing fish. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic, New York, pp 105–124

    Google Scholar 

  • Satchell GH (1992) The venous system. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish physiology, vol 12. Academic, New York, pp 141–234

    Google Scholar 

  • Sato M, Kornberg TB (2002) FGF is an essential mitogen and chemoattractant fo the air sacs of the Drosophila tracheal system. Dev Cell 3:195–207

    PubMed  CAS  Google Scholar 

  • Sato A, Yamamoto H, Sakane H, Koyama H, Kikuchi A (2010) Wnt5a regulates distinct signalling pathways by binding to frizzled-2. EMBO J 29:41–54

    PubMed  CAS  Google Scholar 

  • Satora L (1998) Histological and ultrastructural study of the stomach of the air-breathing Ancistrus multispinnis (Siluriformes, Teleosti). Can J Zool 76:83–86

    Google Scholar 

  • Satora L, Romek M (2010) Morphometry of the gill respiratory surface area in ruffe, Gymnocephalus cernuus (L). Arch Pol Fish 18:59–63

    Google Scholar 

  • Savage RM (1935) The ecology of young tadpoles, with special reference to some adaptations to the habitat of mass spawning in Rana temporaria L. Proc Zool Soc (London) 605–610

    Google Scholar 

  • Saxena S (2005) Lung surfactant: the indispensable component of respiratory mechanics. Resonance August 2005:91–96

    Google Scholar 

  • Saxena L, Sariola H (1987) Early organogenesis of the kidney. Pediatr Nephrol 1:385–392

    Google Scholar 

  • Sayer MDJ, Davenport J (1991) Amphibious fish: why do they leave water? Rev Fish Biol Fish 1:159–181

    Google Scholar 

  • Scano G, Grazzini M, Stendardi L, Gigliotti F (2006) Respiratory muscle energetics during exercise in healthy subjects and patients with COPD. Respir Med 100:1896–1906

    PubMed  Google Scholar 

  • Scapagnini G, D’Agata V, Colombrita C, Caruso A, Quattrone A et al. (2002) Regional distribution of HO-3 in rat brain: peculiarities of a probable retrotransposed gene 2nd International Conferenc on Heme Oxygenase: Catania, Sicily, abstract 155

    Google Scholar 

  • Scarpelli EM (1998) The alveolar surface network: a new anatomy and its physiological significance. Anat Rec 251:491–527

    PubMed  CAS  Google Scholar 

  • Schachner ER, Lyson T, Dodson P (2009) Evolution of the respiratory system in nonavian theropods: evidence from rib and vertebral morphology. Anat Rec 292:1502–1513

    Google Scholar 

  • Schachtner SK, Wang Y, Scott-Baldwin H (2000) Qualitative and quantitative analysis of embryonic pulmonary vessel formation. Am J Respir Cell Mol Biol 13:328–335

    Google Scholar 

  • Schaefer KE (1982) Effects of increased ambient CO2 levels of human and animal health. Experientia 38:1163–1168

    PubMed  CAS  Google Scholar 

  • Schaefer KE, Pasquale ME, Messier AA, Niemoeller H (1979) CO2-induced kidney calcification. Undersea Biomed Res Suppl 6:S155–S161

    Google Scholar 

  • Schauf CL, Moffett DF, Moffett SB (1990) Human physiology. Times Mirror, St Luis, MO

    Google Scholar 

  • Scheid P (1979) Mechanisms of gas exchange in bird lungs. Rev Physiol Biochem Pharmacol 86:137–186

    PubMed  CAS  Google Scholar 

  • Scheid P (1987) Cost of breathing in water- and air-breathers. In: Dejours P, Taylor CR, Weibel ER (eds) Comparative physilogy: life on land and water, Fidia Res Series, vol 9. Liviana, Padova, pp 83–92

    Google Scholar 

  • Scheid P (1990) Avian respiratory system and gas exchange. In: Sutton JR, Coates G, Remmers JE (eds) Hypoxia: the adaptations. BC Decker, Burlington, Ontario, pp 4–7

    Google Scholar 

  • Scheid P, Piiper J (1972) Cross-currrent gas exchange in the avian lungs: effects of reversed parabronchial air flow in ducks. Respir Physiol 16:304–312

    PubMed  CAS  Google Scholar 

  • Scheid P, Piiper J (1976) Quantitative functional analysis of branchial gas transfer: theory and application to Scyliorhinus stellaris (Elasmobranchii). In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic, London, pp 369–391

    Google Scholar 

  • Scheid P, Piiper J (1989) Respiratory mechnics and air flow in birds. In: King AS, McLelland J (eds) Form and function in birds, vol 4. Academic, London, pp 364–391

    Google Scholar 

  • Scheid P, Worth H, Holle JP, Meyer M (1977) Effects of oscillating and intermittent ventilatory flow on efficacy of pulmonary oxygen transfer in the duck. Respir Physiol 31:251–258

    PubMed  CAS  Google Scholar 

  • Scheuer J, Tipton CM (1977) Cardiovascular adaptations to physical training. Annu Rev Physiol 39:221–251

    PubMed  CAS  Google Scholar 

  • Scheuermann DW, Klika E, De Groodt-Lasseel MH, Bazantova I, Switka A (2000) Lamellar inclusions and trilaminar substance in the parabronchial epithelium of the quail (Coturnix coturnix). Ann Anat 182:221–233

    PubMed  CAS  Google Scholar 

  • Schidlowski M (1975) Archean atmosphere and evolution of the terrestrial O2 budget. In: Windley BF (ed) The early history of the earth. Wiley, London, pp 125–201

    Google Scholar 

  • Schimpf NG, Mathews PGD, Wilson RS, White CR (2009) Cockroaches breathe discontinuously to reduce respiratory water loss. J Exp Biol 212:2773–2780

    PubMed  Google Scholar 

  • Schittny J, Burri PH (2003) Morphogenesis of the mammalian lung: aspects of structure and extracellular matrix. In: Massaro DJ, Massaro GC, Chambon P (eds) Lung development and regeneration. Marcel, New York, pp 275–316

    Google Scholar 

  • Schmalhausen II (1968) The origin of terrestrial vertebrates. Academic, London

    Google Scholar 

  • Schmidt T, Carmeliet P (2010) Blood vessel formation: bridges that guide and unite. Nature (London) 465:697–699

    CAS  Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling: why is animal size so important? Cambridge University Press, Cambridge

    Google Scholar 

  • Schmidt-Nielsen K (1990) Animal physiology: adaptation and environment, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Schmidt-Nielsen K, Larimer JL (1958) Oxygen dissociation curves of mammalian blood in relation to body size. Am J Physiol 195:424–428

    Google Scholar 

  • Schmidt-Rhaesa A (2007) The evolution of organ systems. Oxford University Press, Oxford

    Google Scholar 

  • Schmitz A, Perry SF (1999) Stereological determination of tracheal volume and diffusing capacity of the tracheal walls in the stick insect Carausius morosus (Phasmatodea, Lochodidae). Physiol Biochem Zool 72:205–218

    PubMed  CAS  Google Scholar 

  • Schmitz A, Perry SF (2001) Bimodal breathing in jumpimg spiders: morphometric partitioning of the lungs and tracheae in Salticus scenicus (Arachnida, Araneae, Salticidae). J Exp Biol 204:4321–4334

    PubMed  CAS  Google Scholar 

  • Schmitz A, Perry SF (2002) Respiratory organs in wolf spiders: morphometric analysis of lungs and trachea in Pardosa lugubris (L) (Arachnida, Araneae, Lycosidae). Arthropod Struct Dev 31:217–230

    PubMed  Google Scholar 

  • Schmitz A, Gemmel M, Perry SF (2000) Morphometric partitioning of respiratory surfaces in amphioxus (Branchiostoma lanceolatum Pallas). J Exp Biol 203:3381–3390

    PubMed  CAS  Google Scholar 

  • Schneider J (2010). Interactive extrasolar planets catalogue. The extrasolar planents encyclopedia. http://exop[lanet.eu/catalog.php

  • Schneiderman HA (1960) Discontinuous respiration in insects: role of the spiracles. Biol Bull 119:494–528

    Google Scholar 

  • Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5:543–554

    Google Scholar 

  • Scholander PF (1960) Oxygen transport through hemoglobin solutions. How does the presence of hemoglobin in a wet membrane mediate an eightfold increase in oxygen passage. Science 131:585–590

    PubMed  CAS  Google Scholar 

  • Schopf JW (1989) The evolution of the earliest cells. In: Gould JL, Gould CG (eds) Life at the edge: readings from the Scientific American Magazine. WH Freeman and Company, New York, pp 7–23

    Google Scholar 

  • Schopf JW, Walter MR (1983) Archean microfossils: new evidence of of ancient microbes. In: Schopf JW (ed) Earth's earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 214–239

    Google Scholar 

  • Schopf JW, Hayes JM, Walter MR (1983) Evolution of earth's earliest ecosystems: recent progress and unresolved problems. In: Schopf JW (ed) Earth's earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 361–384

    Google Scholar 

  • Schottenfeld J, Song Y, Ghabrial AS (2010) Tube continued: morphogenesis of the Drosophila tracheal system. Curr Opin Cell Biol 22:633–639

    PubMed  CAS  Google Scholar 

  • Schöttle E (1932) Morphologie und physiologie der Atmung bei wasserschlamm-und landlebenden Gobiiformes. Z Wiss Zool 140:1–114

    Google Scholar 

  • Schöttler U, Wienhausen G, Werterman J (1984) Anaerobic metabolism in the lugworm Arenicola marina L: the transition from aerobic to anaerobic metabolism. Comp Biochem Physiol 79B:93–103

    Google Scholar 

  • Schraufstatter IU, Hinshaw DB, Hyslop PA, Spragg RG, Cochrane CG (1986) Oxidase injury of cells: DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J Clin Invest 77:1312–1318

    PubMed  CAS  Google Scholar 

  • Schraufstatter IU, Hyslop PA, Jackson JH, Cochrane CG (1988) Oxidant-induced DNA damage of target cells. J Clin Invest 82:1040–1050

    PubMed  CAS  Google Scholar 

  • Schuger L, O’Shea S, Rheinheimer J, Varani J (1990) Laminin in lung development: effects of anti-laminin antibody in murine lung morphogenesis. Dev Biol 137:26–32

    PubMed  CAS  Google Scholar 

  • Schuger L, Skubitz AP, Zhang J, Sorokin L, He L (1997) Laminin alpha-1 chain synthesis in the mouse developing lung: requirement for epithelial-mesenchymal contact and possible role in bronchial smooth muscle development. J Cell Biol 139:553–562

    PubMed  CAS  Google Scholar 

  • Schumann D, Piiper J (1966) Der sauerstoffbedarf der atmung bei fischen nach messungen au dernarkotisierten schleie (Tinca tinca). Arch Gesamte Physiol 288:14–26

    Google Scholar 

  • Schürch S, Goerke J, Clements JA (1976) Direct determination of surface tension in the lung. Proc Natl Acad Sci USA 73:4698–4702

    PubMed  Google Scholar 

  • Schwartzman D, Caldeira K, Pavlov A (2008) Cyanobacterial emergence at 2.8 gya and greenhouse feedbacks. Astrobiology 8:187–203

    PubMed  CAS  Google Scholar 

  • Scott C (2005) Misconceptions about aerobic and anaerobic energy expenditure. J Intern Soc Sport Nutr 2:32–37

    Google Scholar 

  • Scott DC, Levine C (2006) How long can the ocean slow global warming? Oceanus http://www.whoi.edu/oceanus/viewArticle.doi/id17726

  • Scott C, Lyons TW, Bekker A, Shen Y, Poulton SW et al (2008) Tracing the stepwise oxygenation of Proterozoic ocean. Nature (London) 452:456–459

    CAS  Google Scholar 

  • Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T et al (1999) FGF-10 is essential for limb and lung development. Nat Genet 21:138–141

    PubMed  CAS  Google Scholar 

  • Seller TJ (ed) (1987) Bird respiration, vol I and II. CRC Press, Boca Raton, FL

    Google Scholar 

  • Semenza GL (1999) Regulation of mammalian O2-homeostasis by hypoxia-inducible factor. Annu Rev Cell Dev Biol 15:551–578

    PubMed  CAS  Google Scholar 

  • Semenza GL (2001) HIF-1α, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107:1–3

    PubMed  CAS  Google Scholar 

  • Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein-synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12:5447–5454

    PubMed  CAS  Google Scholar 

  • Sendel A, Kohler I, Fellmann C, Lowe SW, Hengartner MO (2010) HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase. Nature (London) 465:577–583

    Google Scholar 

  • Serano AG, Pérez-Gil J (2006) Protein-lipid interactions and surface activity in the pulmonary surfactant system. Chem Phys Lipids 141:105–118

    Google Scholar 

  • Sereno PC, Martinez RN, Wilson JA, Varricchio DJ, Alcober SA (2009) Evidence for avian intrathoracic air sacs in a new predatory dinosaur from Argentina. PLoS ONE 3(9):e3303. doi:10.1371/journal.pone.0003303

    Google Scholar 

  • Serra R, Moses HL (1995) pRb is necessary for inhibition of N-myc expression by TGF-beta-1 in embryonic lung organ cultures. Development 121:3057–3066

    PubMed  CAS  Google Scholar 

  • Sevel D, Freedman A (1967) Cerebral-reinal degeneration due to carbon dioxide poisoning. Br J Ophthal 51:475–482

    CAS  Google Scholar 

  • Seymour RS (1978) Gas tensions and blood distribution in sea snakes at surface pressure and at simulated depth. Physiol Zool 51:388–407

    Google Scholar 

  • Seymour RS (1982) Physiological adaptations to aquatic life. In: Gans S, Pough FH (eds) Biology of the reptilian, vol 13, Physiology. Academic, London, pp 1–51

    Google Scholar 

  • Seymour RS, Webster MED (1975) Gas transport and blood acid-base balance in diving sea snakes. J Exp Zool 191:169–181

    PubMed  CAS  Google Scholar 

  • Seymour RS, Spragg RG, Hartman MT (1981) Distribution of ventilation and perfusion in the sea snake. Pelamis platurus. J Comp Physiol 60A(145):109–115

    Google Scholar 

  • Shalaby F, Ho J, Stanford WL, Fischer KD, Schuh AC et al (1997) A requirement for flk-1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89:981–990

    PubMed  CAS  Google Scholar 

  • Shams H, Scheid P (1987) Respiration and blood gases in the duck exposed to normocapnic and hypercapnic hypoxia. Respir Physiol 67:1–12

    PubMed  CAS  Google Scholar 

  • Shannon JM, Hyatt RA (2004) Epithelial-mesenchymal interactions in the developing lung. Annu Rev Physiol 66:625–645

    PubMed  CAS  Google Scholar 

  • Shannon P, Kramer DL (1988) Water depth alters respiratory behaviour of Xenopus laevis. J Exp Biol 137:597–602

    PubMed  CAS  Google Scholar 

  • Shannon JM, Gebb SA, Nielsen LD (1999) Induction of alveolar type-II cell differentiation in embryonic tracheal epithelium in mesenchyme-free culture. Development 126:1675–1688

    PubMed  CAS  Google Scholar 

  • Shaul PW (2002) Regulation of endothelial nitric oxide synthetase: location, location, location. Annu Rev Physiol 64:749–774

    PubMed  CAS  Google Scholar 

  • Shaul PW, North AJ, Wu LC, Wells LB, Brannon TS et al (1994) Endothelial nitric oxide synthetase is expressed in cultured human bronchiolar epithelium. J Clin Invest 94:2231–2236

    PubMed  CAS  Google Scholar 

  • Shaul PW, Afshar S, Gibson LL, Sherman TS, Kerecman JD et al (2002) Developmental changes in nitric oxide synthetase isoform expression and nitic oxide production in fetal baboon lung. Am J Physiol Lung Cell Mol Physiol 283:L1192–L1199

    PubMed  CAS  Google Scholar 

  • Shaw-White JR, Bruno MD, Whitsett JA (1999) GATA-6 activates transcription of thyroid transcription factor-1. J Biol Chem 274:2658–2664

    PubMed  CAS  Google Scholar 

  • Shear WA, Kukalova-Pecj J (1990) The ecology of Paleozoic terrestrial arthropods: the fossil evidence. Can J Zool 68:1807–1834

    Google Scholar 

  • Shell SM, Debenedetti PG, Panagiotopoulos AZ (2002) Molecular structural order and anomalies in liquid silica. Rev E Stat Nonlin Soft Matter Phys 66:11202–11208

    Google Scholar 

  • Shepard VAL (2002) Pulmonary surfactant protein D: a novel link between innate and adaptive immunity. Am J Physiol Lung Cell Mol Physiol 282:L516–L517

    Google Scholar 

  • Shepard JW, Minh VD, Dolan GF (1981) Gas exchange in nonperfused dog lungs. J Appl Physiol 51:1261–1267

    PubMed  Google Scholar 

  • Shepherd SA, Thomas IM (1989) Marine invertebrates of Southern Australia. South Australian Govt Press, Adelaide

    Google Scholar 

  • Sherman TS, Chen Z, Yuhanna IS, Lau KS, Margraf LR, Shaul PW (1999) Nitric oxide synthetase isoform expression in the developing lung epithelium. Am J Physiol Lung Cell Mol Physiol 276:L383–L390

    CAS  Google Scholar 

  • Shi W, Xu J, Warburton D (2009) Development, repair and fibrosis: what is common and why it matters. Respirology 14:656–665

    PubMed  Google Scholar 

  • Shibahara S, Muller R, Taguchi H, Yoshida T (1985) Cloning and expression of cDNA for rat heme oxygenase. Proc Natl Acad Sci USA 82:7865–7869

    PubMed  CAS  Google Scholar 

  • Shield JW, Bentley PJ (1973a) Respiration of some urodele and anuran Amphibia in water I. Role of the skin and the gills. Comp Biochem Physiol 46A:17–28

    Google Scholar 

  • Shield JW, Bentley PJ (1973b) Respiration of some urodele and anuran Amphibia in air II. Role of the skin and lungs. Comp Biochem Physiol 46A:29–38

    Google Scholar 

  • Shigetomo F, Sako K, Noda K, Zhang J, Minami M, Mochizuki N (2010) Angiopoietin-1/Tie2 receptor signalling in vascular quiescence and angiogenesis. Histol Histopathol 25:387–396

    Google Scholar 

  • Shiklomanov IA (1993) World fresh water resources. In: Gleick PH (ed) Water in crisis: a guide to the world’s fresh water resources. Oxford University Press, New York, pp 13–24

    Google Scholar 

  • Shima DT, Kuroka M, Deustsch U, Ng YS, Adamis AP, D’Amore PA (1996) The mouse gene for vascular endothelial growth factor: genomic structure, definition of the transcriptional unit and characterization of transcriptional and post-transcriptional regulatory sequences. J Biol Chem 271:3877–3883

    PubMed  CAS  Google Scholar 

  • Shindoh C, Wu D, Ohuchi Y, Kurosawa H, Kikuchi Y et al (1998) Effects of L-NAME and L-Arginine on diaphragm contraction in a septic animal model. Comp Biochem Physiol 119A:219–224

    CAS  Google Scholar 

  • Shiratori M, Oshika E, Ung LP, Sigh G, Shinozuka H et al (1996) Keratinocyte growth factor and embryonic rat lung morphogenesis. Am J Respir Cell Mol Biol 15:328–338

    PubMed  CAS  Google Scholar 

  • Shlaifer A, Breder CM (1940) Social and respiratory behaviour of small tarpon. Zoologica 25:493–512

    Google Scholar 

  • Shu W, Jiang YQ, Lu MM, Morissey EE (2002) Wnt-7b regulates mesenchymal proliferation and vascular development in the lung. Development 129:4831–4842

    PubMed  CAS  Google Scholar 

  • Shu W, Guttentag S, Wang Z, Andril T, Ballad P et al (2005) Wnt/beta-catenin signalling acts upstream of N-myc, BMP4, and FGF signalling to regulate proximal-distal patterning in the lung. Dev Biol 283:226–239

    PubMed  CAS  Google Scholar 

  • Sidell BD, O’Brien KM (2006) When bad things happen to good fish: the loss of hemoglobin and myoglobin expression in Antarctic icefishes. J Exp Biol 209:1791–1802

    PubMed  CAS  Google Scholar 

  • Sidell BD, Driedzic WR, Stowe DB, Johnston IA (1987) Biochemical correlations of power development and metabolic fuel preferanda in fish hearts. Physiol Zool 60:221–232

    Google Scholar 

  • Sidell BD, Vayda ME, Small DJ, Moylan TJ, Londraville RL et al (1997) Variable expression of myoglobin among the hemoglobinless Antarctic icefishes. Proc Natl Acad Sci USA 94:3420–3424

    PubMed  CAS  Google Scholar 

  • Siebert TA, Rugonyi A (2008) Influence of liquid-layer thickness of pulmonary surfactant spreading and collapse. Biophys J 95:4549–4559

    PubMed  CAS  Google Scholar 

  • Siegwart B, Gehr P, Gil J, Weibel ER (1971) Morphometric estimation of pulmonary diffusion capacity. IV. The normal dog lung. Respir Physiol 13:141–159

    PubMed  CAS  Google Scholar 

  • Siever R (1968) Sedimentological consequences of steady state ocean atmosphere. Sedimentol 11:5–29

    CAS  Google Scholar 

  • Sigman DM, Boyle EA (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature (London) 407:859–869

    CAS  Google Scholar 

  • Sigman DM, Hain MP, Haug GH (2010) The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature (London) 466:47–55

    CAS  Google Scholar 

  • Sigurdsson H, Houghton BF (2000) Encyclopedia of volcanoes. Academic, San Diego, CA

    Google Scholar 

  • Simon R, DeHart P, Nadeau D (1989) Resistance of rat pulmonary alveolar epithelial cells to neutrophil- and oxidant-induced injury. Am J Respir Cell Mol Biol 1:221–229

    PubMed  CAS  Google Scholar 

  • Simons RS, Bennet WO, Brainerd EL (2000) Mechanics of lung ventilation in a post-metamorphic salamander, Ambystoma tigrinum. J Exp Biol 203:1081–1092

    PubMed  CAS  Google Scholar 

  • Singh BN, Munshi JSD (1968) On the respiratory organs and mechanics of breathing in Periophthlmus vulgaris. Zool Anz 183:92–110

    Google Scholar 

  • Singh BR, Mishra AP, Singh RP (1982) Development of the air-breathing organ in the snake-headed fish, Channa punctatus. Zool Anz 208:428–439

    Google Scholar 

  • Sivan Y, Gadish T, Fireman E, Soferman R (2009) The use of exhaled nitric oxide in the diagnosis of asthma in school children. J Pediatr 155:211–223

    PubMed  CAS  Google Scholar 

  • Sjöstrand T (1952) The formation of carbon monoxide by decomposition of hemoglobin in vivo. Acta Physiol Scand 26:338

    PubMed  Google Scholar 

  • Skadhauge E (1973) Countercurrent multipliers in avian kidneys. Science 148:389–391

    Google Scholar 

  • Skerret SJ (1994) Host defenses against respiratory infection. Med Clin North Am 78:941–966

    Google Scholar 

  • Skoza L, Snyder A, Kikkawa Y (1983) Ascorbic acid in the brochioalveolar washings. Lung 161:99–109

    PubMed  CAS  Google Scholar 

  • Slama K (1988) A new look at insect respiration. Biol Bull 175:289–300

    Google Scholar 

  • Slama K (1999) Active regulation of insect respiration. Ann Entomol Soc Am 92:916–929

    Google Scholar 

  • Slebos DJ, Rayter SW, Choi AMK (2003) Heme oxygenase-1 and carbon monoxide in pulmonary medicine. Respir Res 4:7 http://respiratory-research.com/content/4/1/7

    Google Scholar 

  • Sleeman M, Fraser J, McDonald M, Yuan S, White D et al (2001) Identification of a new fibroblast growth factor receptor, FGFR-5. Gene 271:171–182

    PubMed  CAS  Google Scholar 

  • Slonim NB, Hamilton LH (1971) Respiratory physiology, 2nd edn. The CV Mosby Company, Saint Louis, MO

    Google Scholar 

  • Smartresk NJ (1994) Respiratory control in the transition from water-breathing to air-breathing in vertebrates. Am Zool 34:264–279

    Google Scholar 

  • Smartresk NJ, Cameron JN (1982a) Respiration and acid-base physiology of the spotted gar, a bimodal breather. I. Normal values and the response to severe hypoxia. J Exp Biol 96:263–280

    Google Scholar 

  • Smartresk NJ, Cameron JN (1982b) Respiration and acid-base physiology of the spotted gar, a bimodal breather. II. Responses to temperature change and hypercapnia. J Exp Biol 96:281–293

    Google Scholar 

  • Smith JLB (1952) Cyprinodont fishes from a sulphur-producing lake in Cyrenaica. Ann Mag Nat Hist Ser 125:888–892

    Google Scholar 

  • Smith FGW (1957) Rivers in the sea. Smithsonian Inst Ann Rept 1956:431–441

    Google Scholar 

  • Smith RP (1986) Toxic responses of the blood. In: Klaasen CD, Amdur MO, Doull J (eds) Cararett and Doull’s toxicology, the basic science of poisons, 3rd edn. MacMillan, New York, pp 223–244

    Google Scholar 

  • Smith JD (2005) Unified description of temperature-dependent hydrogen bond rearrangement in liquid water. Proc Natl Acad Sci USA 102:14171–14174

    PubMed  CAS  Google Scholar 

  • Smith DG, Campbell G (1976) The anatomy of the pulmonary vascular bed in the toad Bufo marinus. Cell Tissue Res 165:199–213

    PubMed  CAS  Google Scholar 

  • Smith DG, Rapson L (1977) Differences in pulmonary microvascular anatomy between Bufo marinus and Xenopus laevis. Cell Tissue Res 178:1–15

    PubMed  CAS  Google Scholar 

  • Smith AD, Taylor DR (2005) Is exhaled nitric oxide measurement a useful clinical test in asthma? Curr Opin Allergy Clin Immunol 5:49–58

    PubMed  Google Scholar 

  • Smits AW, Orgeig S, Daniels CB (1994) Surfactant composition and function in lungs of air breathing fishes. Am J Physiol 266:R1309–R1313

    PubMed  CAS  Google Scholar 

  • Snetkova E, Chelnaya N, Serova L, Saveliev S, Cherdanzova S et al (1995) The effects of space flight on Xenopus laevis larval development. J Exp Zool 273:21–32

    PubMed  CAS  Google Scholar 

  • Snyder GK (1977) Blood corpuscles and blood hemoglobin: a possible example of co-evolution. Science 195:412–413

    PubMed  CAS  Google Scholar 

  • Snyder GK (1983) Respiratory adaptations in diving mammals. Respir Physiol 54:269–294

    PubMed  CAS  Google Scholar 

  • Snyder SH, Baranano DE (2001) Heme oxygenase: a font of multiple messengers. Neuropsychopharmacology 25:294–298

    PubMed  CAS  Google Scholar 

  • Snyder JM, O’Brien JA, Rodgers HF (1987) Localization and accumulation of fibronectin in rabbit fetal lung tissue. Differentation 34:32–39

    CAS  Google Scholar 

  • Söderhäll K, Cerenius L (1998) Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 10:23–28

    PubMed  Google Scholar 

  • Soker S, Gollamudi-Payne S, Fidder H, Charmaheli H, Klagsbrun M (1997) Inhibition of vascular endothelial growth factor (VEGF) induced endothelial cell proliferation by a peptide corresponding to the exon 7-encoded domain of VEGF165. J Biol Chem 272:31582–31588

    PubMed  CAS  Google Scholar 

  • Solem A (1985) Origin and diversification of pulmonate land snails. In: Trueman ER, Clarke MR (eds) The mollusca, vol 10, Evolution. Academic, London, pp 269–293

    Google Scholar 

  • Solomon SE, Purton M (1984) The respiratory epithelium of the lung of the green turtle, Chelonia mydas, L). J Anat 139:353–361

    PubMed  Google Scholar 

  • Somero GN (1991) Biochemical mechanisms of cold adaptation and stenothermality in Antarctic fish. In: di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic fish. Springer, Berlin, pp 231–287

    Google Scholar 

  • Somero GN (1992) Adaptations to high hydrostatic pressure. Ann Rev Physiol 54:557–577

    CAS  Google Scholar 

  • Southorn P, Powis G (1988) Free radicals in medicine. II. Involvement in human disease. Mayo Clin Proc 63:390–408

    PubMed  CAS  Google Scholar 

  • Speir E, Tanner V, Gonzalez MA, Farris J, Baird A, Casscells W (1992) Acidic and basic fibroblast growth factors in adult rat heart myocytes. Circ Res 71:251–259

    PubMed  CAS  Google Scholar 

  • Spragg RS (2007) Surfactant for acute lung injury. Am J Respir Cell Mol Biol 37:377–378. doi:10.1165/rcmb.2007-0004ED

    PubMed  CAS  Google Scholar 

  • Squires RW, Buskirk ER (1982) Aerobic capacity during acute exposure to simulated altitude, 914 to 2286 m. Med Sci Sports Ex 14:36–40

    CAS  Google Scholar 

  • Stabellini G, Locci P, Calvitti M, Evangelisti R, Marinucci L, Bodo M, Carusio A, Canaider S, Carinci P (2001) Epithelial-mesenchymal interactions and lung branching morphogenesis, role of polyamines and transforming growth factor beta1. Eur J Histochem 45:151–162

    PubMed  CAS  Google Scholar 

  • Stafford N (2007) Future crops: the other greenhouse effect. Nature (London) 448:526–528

    CAS  Google Scholar 

  • Stahl M, Schuh R, Adryan B (2007) Identification of FGF-dependent genes in the Drosophila tracheal system. Gene Expr Patterns 1–2:202–209

    Google Scholar 

  • Stahlman MT, Gray ME, Whitsett JA (1996) Expression of thyroid transcription factor-1 (TTF-1) in fetal and neonatal human lung. J Histochem Cytochem 44:673–678

    PubMed  CAS  Google Scholar 

  • Stamler JS, Meissner G (2001) Physiology of nitric oxide in skeletal muscle. Physiol Rev 81:209–237

    PubMed  CAS  Google Scholar 

  • Stamler JS, Toone E, Lipton S, Sucher N (1997) (S)NO signals: translocation, regulation, and a consensus motif. Neuron 18:691–696

    PubMed  CAS  Google Scholar 

  • Stanislaus M (1937) Untersuchungen an der Kolibrilunge. Zeits MorpholTiere 33:261–289

    Google Scholar 

  • Stark-Vancs V, Bell PB, Hutchison VH (1984) Morphological and pharmacological basis for pulmonary ventilation in Amphiuma tridactylum: an ultrastructural study. Cell Tissue Res 238:1–12

    CAS  Google Scholar 

  • Stasica P, Ulanski P, Rosiak JM (1998) Melatonin as a hydroxyl radical scavenger. J Pineal Res 25:65–66

    PubMed  CAS  Google Scholar 

  • Staudinger T, Kordova H, Röggla M, Tesinsky P, Locker GL et al (1998) Comparison of oxygen cost of breathing with pressure support ventilation and biphasic intermittent positive airway pressure ventilation. Crit Care Med 26:1518–1522

    PubMed  CAS  Google Scholar 

  • Stecyk JA, Skovgaard N, Nilsson GE, Wang T (2010) Vasoactivity of hydrogen sulfide in normoxic and anoxic turtles (Trachemys scripta). Am J Physiol Regul Integr Comp Physiol 298:R1225–R1239

    PubMed  CAS  Google Scholar 

  • Steen JB (1965) Comparative aspects of the respiratory gas exchange of sea urchins. Acta Physiol Scand 63:164–170

    PubMed  CAS  Google Scholar 

  • Steen JB (1971) Comparative physiology of respiratory mechanisms. Academic, London

    Google Scholar 

  • Steen JB, Berg T (1966) The gills of two species of hemoglobin-free fishes compared to those of other teleosts, with a note on severe anemia in an eel. Comp Biochem Physiol 18:517–526

    PubMed  CAS  Google Scholar 

  • Steen JB, Kruysse A (1964) The respiratory function of teleostan gills. Comp Biochem Physiol 12:127–142

    PubMed  CAS  Google Scholar 

  • Steffensen JF, Lomholt JP (1983) Energetic cost of active branchial ventilation in the sharksucker Echeneis naucrates. J Exp Biol 103:185–192

    PubMed  CAS  Google Scholar 

  • Steinacker A (1975) Perfusion of the central nervous system of decapod crustaceans. Comp Biochem Physiol 52A:103–104

    Google Scholar 

  • Steinman RM, Cohn ZA (1974) Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. J Exp Biol 138:380–397

    Google Scholar 

  • Stephenson J (1930) The oligochaeta. Clarendon Press, Oxford

    Google Scholar 

  • Sterrer W, Rieger R (1974) Retronectidae: a new cosmopolitan marine family of Catenulida (Turbellaria). In: Riser N, Morse M (eds) The biology of Turbellaria. McGraw-Hill, New York, pp 108–147

    Google Scholar 

  • Stevens ED, Holeton GF (1978) The partitioning of oxygen uptake from air and from water by the large obligate air breathing teleost, pirarucu (Arapaima gigas). Can J Zool 56:974–976

    Google Scholar 

  • Stevenson KB, Harrington J, Nymeyer S, Madhusudhan N, Deager S et al (2010) Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b. Nature (London) 464:1161–1164

    CAS  Google Scholar 

  • Stewart ER, Reese SA, Ultsch GR (2004) The physiology of hibernation in Canadian leopard frogs (Rana pipiens) and bullfrogs (Rana catesbeiana). Physiol Biochem Zool 77:65–73

    PubMed  Google Scholar 

  • Stiehl DP, Jelkmann W, Wenger RH, Hellwig-Burgel T (2002) Normoxic induction of the hypoxia-inducible factor-1α by insulin and interleukin-1β involves the phosphatidylinositol 3-kinase pathway. FEBS Lett 512:157–162

    PubMed  CAS  Google Scholar 

  • Stillman B, Stewart D, Witkowski J (2009) Evolution: the molecular landscape, vol 74. Cold Spring Harbour Laboratory Presss, Cold Spring Harbor, NY

    Google Scholar 

  • Stinner JN (1982) Functional anatomy of the lung of the snake, Pituophis melanoleucus. Am J Physiol 243:R251–R257

    PubMed  CAS  Google Scholar 

  • Stinner JN (1987) Gas exchange and air flow in the lung of the snake. Pituophis melanoleucus. J Comp Physiol 157:307–314

    Google Scholar 

  • Stinson JM, Mattsson JL (1970) Tolerance of rhesus monkeys to graded increase in environmental CO2-serial changes in heart rate and cardiac rhythm. Aerosp Med 41:415–418

    PubMed  CAS  Google Scholar 

  • Stolper DA, Revsbech N, Canfield DE (2009) Growth of E coli at nanomolar concentrations of oxygen. American Geophysical Union, Fall Meeting 2009, abstract #B12A-06

    Google Scholar 

  • Strathmann RR (1990) Why life histories evolve differently in the sea. Am Zool 30:197–207

    Google Scholar 

  • Strazny F, Perry SF (1987) Respiratory system: structure and function. In: Netwig W (ed) Ecophysiology of the spiders. Springer, Berlin, pp 78–94

    Google Scholar 

  • Stupfel M, Bouley G (1970) Physiological and biochemical effects on rats and mice exposed to small concentrations of carbon monoxide for long periods. Ann NY Acad Sci 174:342–368

    PubMed  CAS  Google Scholar 

  • Suarez RK (1992) Hummingbird flight: sustaining the highest mass-specific metabolic rates among vertebrates. Experientia 48:565–570

    PubMed  CAS  Google Scholar 

  • Sullivan LC, Daniels CB, Philips ID, Orgeig S, Whitsett JA (1998) Conservation of surfactant protein A: evidence for a single origin for vertebrate pulmonary surfactant. J Mol Evol 46:131–138

    PubMed  CAS  Google Scholar 

  • Sullivan LC, Orgeig S, Wood PG, Daniels CB (2001) The ontogeny of pulmonary surfactant secretion in the embryonic green sea turtle (Chelonia mydas). Physiol Biochem Zool 74:493–501

    PubMed  CAS  Google Scholar 

  • Sundin L, Nilsson S (2002) Branchial innervation. J Exp Zool 293:232–248

    PubMed  Google Scholar 

  • Sundin L, Reid SG, Ratin FT, Milsom WK (2000) Branchialreceptors and cardiorespiratory reflexes in a neotropical fish, the tambaqui (Colossoma macropomum). J Exp Biol 203:1225–1239

    PubMed  CAS  Google Scholar 

  • Suri C, Mclain J, Thurston G, McDonald DJ, Zhou H et al (1998) Increased vascularization in mice overexpressing angiopoietin-1. Science 282:468–471

    PubMed  CAS  Google Scholar 

  • Susa N, Ueno S, Furukawa Y, Ueda J, Sugiyama M (1997) Potent protective effect of melatonin on chromium (VI) – induced DNA single strand breaks, cytotoxicity, and lipid peroxidation in primary cultures of rat hepatocytes. Toxicol Appl Pharmacol 144:377–384

    PubMed  CAS  Google Scholar 

  • Sutherland D, Samakovlis C, Krasnow MA (1996) Branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell 87:1091–1101

    PubMed  CAS  Google Scholar 

  • Svedhem H, Titov DV, Taylor FW, Witasse O (2007) Venus as a more Earth-like planet. Nature (London) 450:629–632

    CAS  Google Scholar 

  • Swan LW (1961) The ecology of the high Himalayas. Sci Am 205:67–78

    Google Scholar 

  • Swan LW (1970) Goose of the Himalayas. Nat Hist 79:68–75

    Google Scholar 

  • Swenson ER (1990) Kinetics of oxygen and carbon dioxide exchange. In: Boutilier RG (ed) Advances in comparative and environmental physiology, vol 6, Vertebrate gas exchange from environment to cell. Springer, Berlin, pp 163–210

    Google Scholar 

  • Sylvester JT, McGowan C (1978) The effects of agents that bind to cytochrome P-450 on hypoxic pulmonary constriction. Circ Res 43:429–437

    PubMed  CAS  Google Scholar 

  • Szabo C (2007) Hydrogen sulfide and its therapeutic potential. Neture Rev Drug Discov 6:917–935

    CAS  Google Scholar 

  • Szarski H (1983) Cell size and the concept of wasteful and frugal evolutionary strategies. J Theor Biol 105:201–209

    PubMed  CAS  Google Scholar 

  • Szebenyi G, Fallon JF (1999) Fibroblast growth factors as multifunctional signaling factors. Int Rev Cytology 185:45–106

    CAS  Google Scholar 

  • Szewczak JM, Jackson DC (1992) Apneic oxygen uptake in the torpid bat, Eptesicus fuscus. J Exp Biol 173:217–227

    PubMed  CAS  Google Scholar 

  • Taichman DB, Loomes KM, Schachtner SK, Guttentag S, Vu C et al (2002) Notch-1 and jagged-1 expression by the developing pulmonary vasculature. Dev Dyn 225:166–175

    PubMed  CAS  Google Scholar 

  • Takeda SI, Connie CWH, Wagner E, Ramanathan M, Estrera AS, Weibel ER (1999) Compensatory alveolar growth normalizes gas exchange function in immature dogs after pneumonectomy. J Appl Physiol 86:1301–1310

    PubMed  CAS  Google Scholar 

  • Tan AL, De Young A, Noble RW (1972) The pH dependence of the affinity, kinetics and co-operativity of ligand binding to carp hemoglobin, Cyprinus carpio. J Biol Chem 247:2493–2498

    PubMed  CAS  Google Scholar 

  • Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ (1993) Melatonin: a potent endogenous hydroxyl radical scavenger. Endocr J 1:57–60

    Google Scholar 

  • Tan BH, Wong PTH, Bian JS (2009) Hydrogen sulfide: a novel signaling molecule in the central nervous system. Neurochem Int 56:3–10

    PubMed  Google Scholar 

  • Tan BH, Wong PT, Bian JS (2010) Hydrogen sulfide: a novel signaling molecule in the central nervous system. Neurochem Int 56:3–10

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Takei T, Aiba T, Masuda K, Kiuchi A, Fijiwara T (1986) Development of synthetic lung surfactants. J Lipid Res 27:475–485

    PubMed  CAS  Google Scholar 

  • Taneva S, Keough KM (1994) Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface: III. Proteins SP-B plus SP-C with phospholipids in spread monolayers. Biophys J 66:1158–1166

    PubMed  CAS  Google Scholar 

  • Tang C, Li X, Du J (2006) Hydrogen sulfide as a new endogenous gaseous transmitter in the cardiovascular system. Curr Vasc Pharmacol 4:17–22

    PubMed  CAS  Google Scholar 

  • Tanswell AK, Buch S, Liu M, Post M (1999) Factors mediating cell growth in lung injury. In: Brand RD, Coalson J (eds) Chronic lung disease of early infancy. Marcel, New York, pp 493–534

    Google Scholar 

  • Tappan H (1974) Molecular evolution. In: Hayaishi O (ed) Molecular oxygen in biology. Elsevier, Amsterdam, pp 81–135

    Google Scholar 

  • Taylor EW (1982) Control and co-ordination of ventilation and circulation in crustaceans: responses to hypoxia and exercise. J Exp Biol 100:289–319

    Google Scholar 

  • Taylor EW, Butler PJ (1978) Aquatic and aerial respiration in the shore crab, Carcinus maenas (L) acclimated to 15°C. J Comp Physiol 127:315–323

    Google Scholar 

  • Taylor HH, Greenaway P (1979) The structure of the gills and lungs of the arid zone crab, Holthuisana (Austrothelphusa transversa Morgens) (Sundathelphusidae: Brachyura) including observations on arterial vessels within the gills. J Zool (London) 189:359–384

    Google Scholar 

  • Taylor CR, Weibel ER (1981) Design of the mammalian respiratory system. Respir Physiol 11:1–10

    Google Scholar 

  • Taylor EW, Wheatly MG (1980) Ventilation, heart rate and respiratory gas exchange in the crayfish Austropotamobius pallipes (Lereboullet) submerged in normoxic water and following 3 hr exposure in air at 15°C. J Comp Physiol 138:67–78

    Google Scholar 

  • Taylor CR, Weibel ER, Karas RH, Hoppelar H (1989) Matching structures and functions in the respiratory system: allometric and adaptive variations in energy demand. In: Wood SC (ed) Comparative pulmonary physiology: current concents. Marcel, New York, pp 27–65

    Google Scholar 

  • Tefft JD, Lee M, Smith S, Leinwand M, Zhao J et al (1999) Conserved function of mSpry-2 a murine homolog of Drosophila sprouty, which negatively modulates respiratory organogenesis. Curr Biol 9:219–222

    PubMed  CAS  Google Scholar 

  • Tefft JD, Lee M, Smith S, Crowe DL, Bellusci S, Warburton D (2002) mSprouty2 inhibits FGF-10 activated MAP kinase by differentially binding upstream target proteins. Am J Physiol Lung Cell Mol Physiol 283:L700–L706

    PubMed  CAS  Google Scholar 

  • Telfer WH, Kunkel JG (1991) The function and evolution of insect storage hexamers. Annu Rev Entomol 36:205–228

    PubMed  CAS  Google Scholar 

  • Ten Brinke A, van Golde LM, Batenburg JJ (2002) Palmitoylation and processing of the lipopeptide surfactant protein C. Biochimica et Biophysica Acta 1583:253–265

    PubMed  Google Scholar 

  • Ten Have-Opbroek AAW (1991) Lung development in the mouse embryo. Exp Lung Res 17:111–130

    PubMed  Google Scholar 

  • Tenhunen R, Marver HS, Schmid R (1968) The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA 61:748–755

    PubMed  CAS  Google Scholar 

  • Tenney SM (1979) A synopsis of breathing mechanisms. In: Wood SC, Lenfant C (eds) Evolution of respiratory processes. A comparative approach. Marcel, New York, pp 51–106

    Google Scholar 

  • Tenney SM, Remmers JE (1963) Comparative quantitative morphology of the mammalian lung: diffusing area. Nature (London) 197:54–56

    CAS  Google Scholar 

  • Tenney SM, Tenney JB (1970) Quantitative morphology of the cold blooded lungs: Amphibiaand Reptilia. Respir Physiol 9:197–215

    PubMed  CAS  Google Scholar 

  • Tenney SM, Bartlett D, Farber JP, Remmers JE (1984) Mechanics of the respiratory cycle in the green turtle (Chelonia mydas). Respir Physiol 22:361–368

    Google Scholar 

  • Terblanche JS, White CR, Blackburn TM, Marais E, Chown SL (2007) Scaling of gas exchange cycle frequency in insects. Biol Lett 4:127–129

    Google Scholar 

  • Terblanche JS, Marais E, Hetz SK, Chown SL (2008) Control of discontinuous gas exchange in Salma cynthia: effects of atmospheric oxygen, carbon dioxide and moisture. J Exp Biol 211:3272–3280

    PubMed  CAS  Google Scholar 

  • Terwilliger NB (1974) Oxygen equilibria of the vascular and coelomic hemoglobins of the terebellid polychaete, Pistia pacifica Evidence for an oxygen transfer system. Comp Biochem Physiol 48A:745–755

    Google Scholar 

  • Terwilliger NB (1992) Molecular structure of the extracellular heme proteins. In: Mangum CP (ed) Advances in comparative and environmental physiology, vol 13, Blood and tissue oxygen carriers. Springer, Heidelberg, pp 193–229

    Google Scholar 

  • Terwilliger NB (1998) Functional adaptations of oxygen-transport proteins. J Exp Biol 201:1085–1098

    PubMed  CAS  Google Scholar 

  • Terwilliger NB (2001) Molecular evolution of the arthropod hemocyanin superfamily. Mol Biol Evol 18:184–195

    Google Scholar 

  • Terwilliger NB, Garlick RL, Terwilliger NB (1980) Characterization of the hemoglobins and myoglobin of Travisia foetida. Comp Biochem Physiol 66B:261–266

    CAS  Google Scholar 

  • Terwilliger NB, Dangott L, Ryan M (1999) Cryptocyanin, a crustacean molting protein: evolutionary link with arthropod hemocyanins and insect hexamerins. Proc Natl Acad Sci USA 96:2013–2018

    PubMed  CAS  Google Scholar 

  • Thetmeyer H, Waller U, Black KD, Inselmann S, Rosenthal H (1999) Growth of European sea bass (Dicentrarchus labrax) L) under hypoxic and oscillating oxygen conditions. Aquaculture 174:355–367

    Google Scholar 

  • Thiemermann C (2001) Inhaled CO: deadly gas or novel therapeutic? Nat Med 7:534–535

    PubMed  CAS  Google Scholar 

  • Thierny DF (1974) Lung metabolism and biochemistry. Ann Rev Physiol 36:209–231

    Google Scholar 

  • Thom SR, Fischer D, Xu YA, Notarfrancesco K, Ischiropoulos H (2000) Adaptive responses and apoptosis in endothelial cells exposed to carbon monoxide. Proc Natl Acad Sci USA 97:1305–1310

    PubMed  CAS  Google Scholar 

  • Thomas SP (1987) The physiology of bat flight. In: Fenton MB, Racey P, Rayner JMV (eds) Recent advances in the study of bats. Cambridge University Press, Cambridge, pp 75–99

    Google Scholar 

  • Thomas S, Fievet B, Barthelemy L, Peyraud C (1983) Comparisons of exogenous and endogenous hypercapnia on ventilation and oxygen uptake in the rainbow trout (Salmo gairdneri R). J Comp Physiol 151B:185–190

    Google Scholar 

  • Thomas DD, Liu X, Kantrow SP, Lancaster JR (2001) The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc Natl Acad Sci USA 98:355–360

    PubMed  CAS  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ et al (2004) Extinction risk from climate change. Nature (London) 427:145–148

    CAS  Google Scholar 

  • Thompson D'AW (1942) On growth and form, 1st edtn. Cambridge, Cambridge University Press

    Google Scholar 

  • Thompson RJ, Nurse CA (1998) Anoxia differentially modulates multiple K+ currents and depolarizes neonatal rat adrenal chromaffin cells. J Physiol (London) 512:421–434

    CAS  Google Scholar 

  • Thompson CM, Wyatt CN (2011) Inhibition of adenylate cyclase attenuates muscarinic Ca2+ signaling by PKA-independent mechanism in rat carotid body type-I cells. Respir Physiol Neurobiol 175:90–96

    PubMed  CAS  Google Scholar 

  • Thompson RJ, Jackson A, Nurse CA (1997) Developmental loss of hypoxix chemosensitivity in rat adrenomedullary chromaffin cells. J Physiol (London) 498:503–510

    CAS  Google Scholar 

  • Thompson RJ, Farranger SM, Cutz E, Nurse CA (2002) Developmental regulation of O2-sensing in neonatal adrenal chromaffin cells from wild-type and NADPH-oxidase-deficient mice. Pflugers Arch (Eur J Physiol) 444:539–548

    CAS  Google Scholar 

  • Thorpe WH (1930) The biology, post-embryonic development, and economic importance of Cryptochaetum iceryae (Diptera, Agromyzidae) parasitic on Icerya purchasi (Coccidae, Monophlebini). Proc Zool Soc Lond 60:929–971

    Google Scholar 

  • Thorpe WH (1932) Experiments upon respiration in the larvae of certain parasitic Hymenoptera. Proc R Soc Lond B Biol Sci 109:450–471

    Google Scholar 

  • Thorpe WH, Crisp DJ (1941) Studies on plastron respiration II. The respiratory efficiency of the plastron in Amphelocheirus. J Exp Biol 24:270–303

    Google Scholar 

  • Tichelaar JW, Lu W, Whitsett JA (2000) Conditional expression of fibroblast growth factor-7 in the developing and mature lung. J Biol Chem 275:111858–111864

    Google Scholar 

  • Tkaczyk J, Vizek M (2007) Oxidative stress in the lung tissue- sources of reactive oxygen species and antioxidant defence. Prague Med Report 108:105–114

    CAS  Google Scholar 

  • Tochima M, Ohtani Y, Ohtani O (2004) Three-dimensional architecture of elastin and collagen fiber networks in the human and rat lung. Arch Histol Cytol 67:31–40

    Google Scholar 

  • Todd ES, Ebeling AW (1966) Aerial respiration in the longjaw mudsucker Gillichthys mirabilis (Teleostei: Gobiidae). Biol Bull Mar Biol Lab (Woods Hole) 130:265–288

    Google Scholar 

  • Toews DP, MacIntyre D (1977) Blood respiratory properties of a viviparous amphibian. Nature (London) 266:464–465

    CAS  Google Scholar 

  • Toews DP, MacIntyre D (1978) Respiration and circulation in an apodan amphibian. Can J Zool 56:199–214

    Google Scholar 

  • Toews DP, Boutilier RG, Todd L, Fuller N (1978) Carbonic anhydrase in the amphibia. Comp Biochem Physiol 59A:211–213

    CAS  Google Scholar 

  • Toledano MB, Leonard WJ (1991) Modification of transcription factor NF-кB binding activity by oxidation-reduction in vitro. Proc Natl Acad Sci USA 88:4328–4332

    PubMed  CAS  Google Scholar 

  • Tomanek RJ, Holifield JS, Reiter RS, Sandra A, Lin JJC (2002) Role of VEGF family members and receptors in coronary vessel formation. Dev Dyn 225:233–240

    PubMed  CAS  Google Scholar 

  • Torday JS, Rehan VK (2004) Deconvoluting lung evolution using functional/comparative genomics. Am J Respir Cell Mol Biol 31:8–12

    PubMed  CAS  Google Scholar 

  • Toulmond A (1975) Blood oxygen transport and metabolism of the confined lugworm Arenicola marina (L) II. In vitro study. Respir Physiol 31:151–160

    Google Scholar 

  • Toulmond A (1991) Respiratory and metabolic adaptations of aquatic annelids to low environmental oxygen tensions. In: Woakes AJ, Grieshaber MK, Bridges CR (eds) Physiological strategies for gas exchange and metabolism. Cambridge University Press, Cambridge, pp 191–210

    Google Scholar 

  • Toulmond A, Tchernigovtzeff C (1984) Ventilation and respiratory gas exchages of the lugworm Arenicola marina (L) as functions of ambient PO2 (20–700 torr). Respir Physiol 57:349–363

    PubMed  CAS  Google Scholar 

  • Toulmond A, Tchernigovtzeff C, Greber P, Jouin C (1984) Epidermal sensitivity to hypoxia in the lugworm. Experientia 40:541–543

    Google Scholar 

  • Trapnell BC, Whitsett JA, Nakata K (2003) Pulmonary alveolar proteinosis. N Engl J Med 349:2527–2539

    PubMed  CAS  Google Scholar 

  • Tremblay N, Gosselin A (1998) Effect of carbon dioxide enrichment and light. Hort Technol October–December issue 8(4)

    Google Scholar 

  • Trench RK, Trench MC, Muscatine L (1972) Symbiotic chloroplasts: their photosysnthetic products and contribution to mucus synthesis in two marine slugs. Biol Bull 142:335–349

    PubMed  CAS  Google Scholar 

  • Tripp HJ, Bench SR, Turk KA, Foster RA, Desany BA et al (2010) Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacteria. Nature (London) 464:90–94

    CAS  Google Scholar 

  • Troisi FM (1957) Delayed death caused by gassing in a silo containing green foliage. Br J Ind Med 14:56–58

    PubMed  CAS  Google Scholar 

  • Truchot JP (1975) Blood acid-base changes during experimental emersion and reimmersion of the intertidal crab Carcinus maenas (L). Respir Physiol 23:351–360

    PubMed  CAS  Google Scholar 

  • Truchot JP (1987) Comparative aspects of extracellular acid-base balance. Springer, Berlin

    Google Scholar 

  • Truchot JP, Duhamel-Jouve A (1980) Oxygen and carbon dioxide in the marine intertidal environment: diurnal and tidal changes in rockpools. Respir Physiol 39:241–254

    PubMed  CAS  Google Scholar 

  • Tsarouhas V, Senti KA, Jayaram SA, Tiklova K, Hemphala JC et al (2007) Sequential pulses of apical epithelail secretion and endocytosis drive airway maturation in Drosophila. Dev Cell 13:214–225

    PubMed  CAS  Google Scholar 

  • Tsuburai T, Suzuli M, Nagashima Y, Susulis S, Inoue S et al (2002) Adenovirus-mediated transfer and overexpression of heme oxygenase-1 cDNA in lung prevents bleomycin-induced pulmonary fibrosis via a Fas-Fas ligand-independent pathway. Hum Gene Ther 13:1945–1960

    PubMed  CAS  Google Scholar 

  • Tsuda A, Filipovic N, Haberthür D, Dickie R, Matsui R et al (2008) Finite element 3-D reconstruction of the pulmonary acinus imaged by synchrotron X-ray tomography. J Appl Physiol 105:964–976

    PubMed  CAS  Google Scholar 

  • Tu MC, Chu CW, Lue KY (1999) Specific gravity and mechanisms for its control in tadpoles of three anuran species from different water strata. Zool Stud 38:76–81

    Google Scholar 

  • Tucker VA (1972) Respiration during flight in birds. Respir Physiol 14:75–82

    PubMed  CAS  Google Scholar 

  • Tucker VA (1998) Gliding flight: speed and accelelation of ideal falcons during diving and pull out. J Exp Biol 201:403–414

    PubMed  Google Scholar 

  • Tuder RM, Flook BE, Voelkel NF (1995) Increased gene expression of VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. J Clin Invest 95:1798–1807

    PubMed  CAS  Google Scholar 

  • Tuffts BL, Vincent CJ, Currie S (1998) Different red blood cell characteristics in a primitive agnathan (M. glutinosa) and a more recent teleost (O. mykiss) influence their strategies for blood CO2 transport. Comp Biochem Physiol A Mol Integr Physiol 119:533–541

    Google Scholar 

  • Turbeville JM, Pfeifer DM, Field KG, Raff RA (1991) The phylogenetic status of arthropods, as inferred from 18S rRNA sequences. Mol Biol Evol 8:669–686

    PubMed  CAS  Google Scholar 

  • Uchiyama M, Yoshizawa H, Wakasugi C, Oguro C (1990) Structure of the internal gills in tadpoles of the crab-eating frog, Rana cancrivora. Biol Sci 7:623–630

    Google Scholar 

  • Ultsch GR, Bradford DF, Freda J (1999) Physiology: coping with the environment. In: McDiarmid RW, Altig R (eds) Tadpoles: the biology of anuran larvae. University of Chicago Press, Chicago, IL, pp 189–214

    Google Scholar 

  • Ultsch GR, Brainerd EL, Jackson DC (2004a) Lung collapse among aquatic reptiles and amphibians during longterm diving. Comp Biochem Physiol A 139:111–115

    Google Scholar 

  • Ultsch GR, Reese RA, Stewart ER (2004b) The physiology of hibernation in Rana pipiens: metabolic rate, critical oxygen tension, and the effects of hypoxia on several plasma variables. J Exp Zool 301:169–176

    Google Scholar 

  • UNEP (1991) The state of the world environment. United Nations Environmental Programme, Nairobi, 48p

    Google Scholar 

  • Usui H, Shibayama M, Ohbayashi N, Konishi M, Takada S et al (2004) FGF-18 is required for embryonic lung alveolar development. Biochem Biophy Res Commun 322:887–892

    CAS  Google Scholar 

  • Utz J, Ullrich V (1991) Carbon monoxide relaxes ileal smooth muscle through activation of guanylate cyclase. Biochem Pharmacol 41:1195–1201

    PubMed  CAS  Google Scholar 

  • Valentine JW (1994) Late Precambrian bilaterians: grades and clades. Proc Natl Acad Sci USA 91:6751–6757

    PubMed  CAS  Google Scholar 

  • Valentine JW, Jablonski D, Erwin DH (1999) Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development 126:851–859

    PubMed  CAS  Google Scholar 

  • Van Dam L (1938) On the utilization of oxygen and regulation of breathing in some aquatic animals. Dissertation, Groningen

    Google Scholar 

  • Van Dam L (1954) On the respiration in scallops (Lamellibranchia). Biol Bull Mar Biol Lab (Woods Hole) 107:192–202

    Google Scholar 

  • Van Der Vliet A, O’Neill CA, Cross CE, Koostra JM, Volz WG, Halliwell B, Louie S (1999) Determination of low-molecular-mass antioxidant concentrations in human respiratory tract lining fluids. Am J Physiol 276:L289–L296

    PubMed  Google Scholar 

  • Van Dover CL, German CR, Speer KG, Parson LM, Vrijenhoek RC (2002) Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295:1253–1257

    PubMed  Google Scholar 

  • Van Holde KE, Miller KI (1982) Hemocyanins. Q Rev Biophy 15:1–129

    Google Scholar 

  • Van Holde KE, Miller KI (1995) Hemocyanins. Adv Protein Chem 47:1–81

    PubMed  Google Scholar 

  • Van Holde KE, Miller KI, Decker H (2001) Hemocyanins and invertebrate evolution. J Biol Chem 276:15563–15566

    PubMed  Google Scholar 

  • Van Tuyl MV, Del Riccio V, Post M (2004) Lung branching morphogenesis: potential for regeneration of small conducting airways. In: Massaro DJ, Massaro GC, Chambon P (eds) Lung development and regeneration. Marcel, New York, pp 355–393

    Google Scholar 

  • Van Tuyl MV, Liu J, Wang J, Kuliszewski M, Tibboel D, Post M (2005) Role of oxygen and vascular development in epithelial branching morphogenesis of the developing mouse lung. Am J Physiol Lung Cell Mol Physiol 288:167–178

    Google Scholar 

  • Van Valen L (1971) The history and stability of atmospheric oxygen. Science 171:439–443

    PubMed  Google Scholar 

  • Veldhuizen EJ, Haagsman HP (2000) Role of pulmonary surfactant components in surface film formation and dynamics. Biochim Biophys Acta 1467:255–270

    PubMed  CAS  Google Scholar 

  • Veldhuizen R, Nag K, Orgeig S, Possmayer F (1998) The role of lipids in pulmonary surfactant. Biochim Biophys Acta 1408:90–108. doi:10.1016/S0925-4439(98)00061-1

    PubMed  CAS  Google Scholar 

  • Vella CA, Marks D, Roberg RA (2006) Oxygen cost of ventilation during incremental exercise to VO2max. Respirology 11:175–181

    PubMed  Google Scholar 

  • Veness-Meehan KA, Pierce RA, Moats-Staats BM, Stiles AD (2002) Retinoic acid attenuates O2-induced inhibition of lung septation. Am J Physiol 283:L971–L980

    CAS  Google Scholar 

  • Venkatesh B (2003) Evolution and diversity of fish genomes. Curr Opin Genet Dev 13:588–592

    PubMed  CAS  Google Scholar 

  • Vincent WS (1988) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge

    Google Scholar 

  • Vincent S, Ruberte E, Grieder NC, Chen CK, Haerry T, Schuh R, Affolter M (1997) DPP controls tracheal cell migration along the dorsoventral body axis of the Drosophila embryo. Development 124:2741–2750

    PubMed  CAS  Google Scholar 

  • Vitali SD, Richardson KC (1998) Evaluation of pulmonary volumetric morphometry at the light and electron microscopy level in several species of passerine birds. J Anat 193:573–580

    PubMed  Google Scholar 

  • Vitalis TZ, Furilla RA, Burggren WW (1988) Ventilation and gas exchange in the snake. Thamnophis elegans. Am Zool 28:47A

    Google Scholar 

  • Vlodavsky I, Folkman J, Sullivan R, Fridman R, Ishai MR et al (1987) Endothelial cell derived basic fibroblast growth factor: synthesis and deposition into subendothelial matrix. Proc Natl Acad Sci USA 84:2292–2296

    PubMed  CAS  Google Scholar 

  • Voeikov V (2001) Reactive oxygen species, water, photons, and life. Riv Biol Forum 94:193–214

    Google Scholar 

  • Voelkel NF, Vandvier RW, Tuder RM (2006) Vascular endothelial growth factor in the lung. Am J Physiol Lung Cell Mol Physiol 290:L209–L221

    PubMed  CAS  Google Scholar 

  • Vogt SS, Butler RP, Riviera EJ, Haghighipour N, Henry GW, Williamson MH (2010) The Lick-Carnegie Exoplanet Survey: A 3.1 M_ planet in the hospitable zone of the nearby M3V Star Gliese 581. Astronomical J 723:954–978

    Google Scholar 

  • Volk T (2008) CO2 rising: the world's greatest environmental challenge. MIT, Cambridge, p 223, ISBN 978–0262229835

    Google Scholar 

  • Volpe MV, Martin A, Vosatka RJ, Mazzoni CL, Nielsen HC (1997) Hoxb-5 expression in the developing mouse lung suggests a role in branching morphogenesis and epithelial cell fate. Histochem Cell Biol 108:495–504

    PubMed  CAS  Google Scholar 

  • Von Neergaard K (1929) New opinions about the fundamentals of respiratory mechanics: the retraction force of the lung in relationship to the surface tension within the alveoles (in German). Z Ges Exp Med 66:373–394

    Google Scholar 

  • Voorhout WF, Veenendaal T, Haagsman HP, Verklejj AJ, van Golde LM et al (1992) Intracellular processing of pulmonary surfactant protein B in an endosomal/lysosomal compartment. Am J Physiol 263:L479–L486

    PubMed  CAS  Google Scholar 

  • Vulesevic B, McNeill B, Perry SF (2006) Chemoreceptor plasticity and respiratory acclimation in the zebrafish, Danio rerio. J Exp Biol 209:1261–1273

    PubMed  CAS  Google Scholar 

  • Wagner PD (1977) Diffusion and chemical reaction of pulmonary gas exchange. Physiol Rev 57:257–312

    PubMed  CAS  Google Scholar 

  • Wagner GP (1989) The origin of morphological characters and the biological basis of homology. Evolution 43:1157–1171

    Google Scholar 

  • Wagner GP (1998) Complexity matters. Science 279:1158–1159

    PubMed  CAS  Google Scholar 

  • Wagner CA (2009) Hydrogen sulfide: a new gaseous signal molecule and blood pressure regulator. J Nephrol 22:173–176

    PubMed  CAS  Google Scholar 

  • Wagner PD, Gale GE, Moon RE, Torre-Bueno JR, Stolp BW, Saltman HA (1986) Pulmonary gas exachange in humans exercising at sea level and simulated altitude. J Appl Physiol 61:260–270

    PubMed  CAS  Google Scholar 

  • Wagner F, Asfar P, Calzia E, Radermacher P, Szabo C (2009) Bench-to-bedside review: hydrogen sulfide – the third gaseous transmitter: applications for critical care. Crit Care 13:213. doi:10.1186/cc7700

    PubMed  Google Scholar 

  • Wakabayashi S, Matsubara H, Webster DA (1986) Primary structure of a dimeric bacterial hemoglobin from Vitreoscilla. Nature (London) 322:481–483

    CAS  Google Scholar 

  • Wakeman JM, Ultsch GR (1976) The effects of dissolved O2 and CO2 on metabolism and gas exchange partitioning in aquatic salamanders. Physiol Zool 48:348–359

    Google Scholar 

  • Walker JCA (1974) Stability of the atmosphere. Am J Sci 274:193–214

    CAS  Google Scholar 

  • Walker JCG (1976) Stability of the atmospheric oxygen. Am J Sci 274:193–214

    Google Scholar 

  • Walker JCG (1977) Evolution of the atmosphere. Macmillan, New York

    Google Scholar 

  • Walker JCG (1978) Oxygen and hydrogen in the primitive atmosphere. Pure Appl Geophys 116:222–231

    CAS  Google Scholar 

  • Walker JCG (1980a) Atmospheric constraints on the evolution of metabolism. Orig Life 10:93–104

    PubMed  CAS  Google Scholar 

  • Walker JCG (1980b) The imfluence of life on the evolution of the atmosphere. Life Sci Space Res 18:89–100

    PubMed  CAS  Google Scholar 

  • Walker JCG (1980c) The oxygen cycle. In: Hutzinger O (ed) Handbook of environmental chemistry, vol Part A: The natural environment and the biogeochemical cycles. Springer, Berlin, p 258

    Google Scholar 

  • Walker JCG (1985) Carbon dioxide on the early Earth. Orig Life Evol Biosph 16:117–127

    PubMed  CAS  Google Scholar 

  • Walker JCG, Klein C, Schidlowski M, Schopf JW, Sevenson DJ, Walter MR (1983) Environmental evolution of the Archean-early Proterozoic Earth. In: Schopf W (ed) The Earth's earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 260–290

    Google Scholar 

  • Wallengren H (1914) Physiolog-Biolog Stidien uber die Atmung bei den Arthropoden. III. Die Atmung der Aeschnalarven. Lunds Univ Aasskr NF Avd 10:1–28

    Google Scholar 

  • Walshe BM (1948) The oxygen requirements and thermal resistance of chironomid larvae from flowing and from still waters. J Exp Biol 25:35–44

    Google Scholar 

  • Walson KH, Tang M, Glumac A, Alexander H, Manole MD, Hsia CJ, Clark RS, Kochanek PM, Kagan VE, Bayir H (2010) Normoxic versus hyperoxic resuscitation in pediatric asphyxial cardiac arrest: effects on oxidative stress. Crit Care Med 39:335–343

    Google Scholar 

  • Walter E, Dreher D, Kok M, Thiele L, Kiama SG et al (2001) Hydrophilic poly (DL-lactide-co-glycolide) microspheres for the delivery of DNA to human-derived macrophages and dendritic cells. J Control Release 76:149–168

    PubMed  CAS  Google Scholar 

  • Wan H, Dingle S, Xu Y, Besnard V, Kaestner KH et al (2005) Compensatory roles of FOXA-1 and FOXA-2 during lung morphogenesis. J Biol Chem 280:13809–13816

    PubMed  CAS  Google Scholar 

  • Wang R (2002) Two’s a company, three is a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798

    PubMed  CAS  Google Scholar 

  • Wang R (2003) The gasotransmitter role of hydrogen sulfide. Antioxid Redox Signal 5:493–501

    PubMed  Google Scholar 

  • Wang R (2009) Hydrohen sulfide: a new RDRF. Kidney Int 76:700–7004

    PubMed  CAS  Google Scholar 

  • Wang R (2010) Hydrogen sulfide: the third gasotransmitter in biology and medicine. Antioxid Redox Signal 12:1061–1064

    PubMed  CAS  Google Scholar 

  • Wang T, Warburton SJ (1995) Breathing pattern and cost of ventilation in the American alligator. Respir Physiol 102:29–37

    PubMed  CAS  Google Scholar 

  • Wang N, Banzett RB, Nations CS, Jenkins EA (1992) An aerodynamic valve in the avian primary bronchus. J Exp Biol 262:441–445

    CAS  Google Scholar 

  • Wang D, Youngson C, Wong V, Yeger H, Dinauer MC et al (1996) NADPH-oxidase and a hydrogen peroxide-sensitive K+ channel may function as an oxygen sensor complex in airway chemoreceptors and small cell lung carcinoma cell lines. Proc Natl Acad Sci USA 93:13182–13187

    PubMed  CAS  Google Scholar 

  • Wang Z, Shu W, Lu MM, Morissey EE (2005) Wnt-7b activates canonical signalling in epithelial and vascular smooth muscle cells through interactions with Fzd-1, fzd-10, and LRP5. Mol Cell Biol 25:5022–5030

    PubMed  CAS  Google Scholar 

  • Wang YF, Jin HF, Tang CS, Du JB (2006) Role of gasotransmitters in the pathogenesis of pulmonary hypertension. Beijing Da Xue Xue Bao 38:326–330

    PubMed  CAS  Google Scholar 

  • Wang MK, Cai WJ, Zhu YC (2010) The mechanisms of angiogenesis: a role of hydrogen sulfide. Clin Exp Pahrmacol Physiol 37:764–771

    CAS  Google Scholar 

  • Wangensteen OD (1972) Gas exchange by a bird's embryo. Respir Physiol 14:64–74

    PubMed  CAS  Google Scholar 

  • Wangensteen OD, Rahn H (1970) Respiratory gas exchange by the avian embryo. Respir Physiol 11:31–45

    PubMed  CAS  Google Scholar 

  • Wangensteen OD, Weibel ER (1982) Morphometric evaluation of chorioallantoic oxygen transport in the chick embryo. Respir Physiol 47:1–20

    PubMed  CAS  Google Scholar 

  • Wangensteen OD, Wilson D, Rahn H (1970) Diffusion across the shell of the hen's egg. Respir Physiol 11:16–30

    PubMed  CAS  Google Scholar 

  • Wappner P, Gabay L, Shilo BZ (1997) Interactions between the EGF receptor and DPP pathways establish distinct cell fates in the tracheal placodes. Development 124:4707–4716

    PubMed  CAS  Google Scholar 

  • Warburton D (2008) Developmental biology: order in the lung. Nature (London) 453:733–735

    CAS  Google Scholar 

  • Warburton D, Bellusci S (2004) The molecular genetics of lung morphogenesis and injury repair. Paediatr Respir Rev 5:S283–S287

    PubMed  Google Scholar 

  • Warburton D, El-Hashash A, Carraro G, Tiozzo C, Sala F et al (2010) Lung organogenesis. Curr Top Dev Biol 90:73–158

    PubMed  CAS  Google Scholar 

  • Ward PD (2006) Out of thin air: dinosaurs, birds and Earth’s ancient atmosphere. Joseph Henry Press, Washington, DC

    Google Scholar 

  • Ward HE, Nicholas TE (1984) Alveolar type I and type II cells. Aust NZ J Med 14:731–734

    CAS  Google Scholar 

  • Ward JK, Barnes PJ, Tadjkarimi S, Yacoub MH, Belvisi MG (1995) Evidence for the involvement of cGMP in neural bronchodilator responses in human trachea. J Physiol 483:525–536

    PubMed  CAS  Google Scholar 

  • Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14

    PubMed  Google Scholar 

  • Warneck P (1988) Chemistry of the natural atmosphere. Academic, San Diego, CA

    Google Scholar 

  • Warnecke C, Zaborowska Z, Kurreck J, Erdmann VA, Frei U et al (2004) Differentiating the functional role of hypoxia-inducible factor (HIF)-1α and HIF-2α (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2α target gene in Hep3B and Kelly cells. FASEB J 18:1462–1464

    PubMed  CAS  Google Scholar 

  • Wasserzug RJ, Paul RD, Feder ME (1981) Cardiorespiratory synchrony in anuran larvae (Xenopus laevis, Pachymedusa dacnicolor, and Rana berlandieri). Comp Biochem Physiol 70A:329–334

    Google Scholar 

  • Watanabe E, Smith DM, Sun J, Smart FW, Delcampo JB et al (1998) Effect of basic fibroblast growth factor on angiogenesis in the infarcted porcine heart. Basic Res Cardiol 93:30–37

    PubMed  CAS  Google Scholar 

  • Watanabe M, Kikawada T, Minagawa N, Yukuhir FT, Okuda T (2002) Mechanism allowing an insect to survive complete dehydration and extreme temperatures. J Exp Biol 205:2799–2802

    PubMed  CAS  Google Scholar 

  • Waterman FA (1937) The origin and development of the frog internal musculature of the frog lung (Rana pipiens). Anat Anz XXXIX:97–109

    Google Scholar 

  • Watson RR, Fu Z, West JB (2007) Morphometry of the extremely thin pulmonary blood-gas barrier in the chicken lung. Am J Physiol Lung Cell Mol Physiol 292:L769–L777

    PubMed  CAS  Google Scholar 

  • Watson RR, Fu Z, West JB (2008) Minimal distensibility of pulmonary capillaries in avian lungs compared with mammalian lungs. Respir Physiol Neurobiol 160:208–214

    PubMed  Google Scholar 

  • Weaver TE, Conkright JJ (2001) Function of surfactant proteins B and C. Annu Rev Physiol 63:555–578

    PubMed  CAS  Google Scholar 

  • Weaver M, Krasnow MA (2008) Dual origin of tissue-specific progenitor cells in Drosophila tracheal remodelling. Science 321:1496–1499

    PubMed  CAS  Google Scholar 

  • Weaver M, Dunn NR, Hogan BL (2000) BMP-4 and FGF-10 play opposing roles during lung bud morphogenesis. Development 127:2695–2704

    PubMed  CAS  Google Scholar 

  • Weber RE (1992) Molecular strategies in the adaptation of vertebrate hemoglobin function. In: Wood SC, Weber RE, Hargens AR, Millard RW (eds) Physiological adaptations in vertebrates: respiration, circulation, and metabolism. Marcel, New York, pp 257–277

    Google Scholar 

  • Weber RE, Vinogradov SN (2001) Nonvertebrate hemoglobins: functions and molecular adaptations. Physiol Rev 81:569–628

    PubMed  CAS  Google Scholar 

  • Weber KC, Visscher MB (1969) Metabolism of the isolated canine lung. Am J Physiol 217:1044–1052

    PubMed  CAS  Google Scholar 

  • Weber RE, Wood SC, Davis BJ (1979) Acclimation to hypoxic water in facultative air-breathing fish: blood oxygen affinity and allosteric effectors. Comp Biochem Physiol 62A:125–129

    CAS  Google Scholar 

  • Weber RE, Braunitzer G, Kleinschmidt T (1985) Functional multiplicity and structural correlations in the hem system of larvae of Chironomus thunni thunni (Insecta, Diptera): Hb components CTT 1, CTT II, CTT III, CTT IV, CTT VI, CTT VIIB, CTT IX, and CTT X. Comp Biochem Physiol 80B:747–753

    CAS  Google Scholar 

  • Webster KA (2003) Evolution of the co-ordinate regulation of glycolytic enzyme genes by hypoxia. J Exp Biol 206:2911–2922

    PubMed  CAS  Google Scholar 

  • Wedel MJ (2009) Evidence for bird-like air sacs in saurichian dinosaurs. J Exp Zool A 311:611–628

    Google Scholar 

  • Wegiel B, Chin BY, Otterbein LE (2008) Inhale to survive, cycle or die? Carbon monoxide and cellular proliferation. Cell Cycle 15:1379–1384

    Google Scholar 

  • Weibel ER (1963) Morphometry of the human lung. Springer, Berlin

    Google Scholar 

  • Weibel ER (1970/71) Morphometric estimation of pulmonary diffusion capacity. I. Model and method. Respir Physiol 11:54–75

    Google Scholar 

  • Weibel ER (1973) Morphological basis of the alveolar-capillary gas exchange. Physiol Rev 53:419–495

    PubMed  CAS  Google Scholar 

  • Weibel ER (1979) Stereological methods. Practical methods for biological morphometry. Academic, New York

    Google Scholar 

  • Weibel ER (1984) The pathway for oxygen: structure and function in the mammalian respiratory system. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Weibel ER (1986) Functional morphology of lung parenchyma. In: Macklem PT, Mead J (eds) Handbook of physiology, vol III, The respiratory system Mechanics of breathing, Sect 3. American Physiological Society, Bethesda, MD, pp 89–111

    Google Scholar 

  • Weibel ER (1989) Fractal geometry: a design principle for living organisms. Am J Physiol 261:L361–L369

    Google Scholar 

  • Weibel ER (1990) Morphometry: stereological theory and practical methods. In: Gil J (ed) Models of lung disease: microscopy and structural methods. Dekker, New York, pp 199–252

    Google Scholar 

  • Weibel ER (1991) Fractal geometry: a design principle for living organisms. Am J Physiol 261:L361–L369

    PubMed  CAS  Google Scholar 

  • Weibel ER (1997) Design of airways and between the organism blood vessels considered as confluent tree. In: Crystal RD, West JB, Weibel ER, Barnes PJ (eds) The lung: scientific foundations. Lippincott-Raven, Philadelphia, PA, pp 1061–1071

    Google Scholar 

  • Weibel ER (1999) Understanding the limitation of O2 supply through comparative physiology. Respir Physiol Neurobiol 118:85–93

    CAS  Google Scholar 

  • Weibel ER (2000) Symmorphosis: on form and function in shaping life. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Weibel ER (2005) Mendelbrot’s fractals and the geometry of life: a tribute to Benoit Mandelbrot on his 80th birthday. In: Losa GA, Merlini D, Nonnenmacher TF, Weibel ER (eds) Fractal in biology and medicine, vol IV. Birkhäuser, Basel, pp 3–16

    Google Scholar 

  • Weibel ER (2008a) How to make an alveolus. Eur Respir J 31:483–485

    PubMed  CAS  Google Scholar 

  • Weibel ER (2008b) Modelling structure-function interdependence of pulmonary gas exchange. Adv Exp Med Biol 605:195–200

    PubMed  Google Scholar 

  • Weibel ER (2009) What makes a good lung? The morphometric basis of lung function. Swiss Med Wkly 139:375–386

    PubMed  Google Scholar 

  • Weibel ER, Bachofen H (1997) The fibre scaffold of lung parenchyma. In: Crystal RG, West JB, Weibel ER, Barnes PJ (eds) The lung: scientific foundations, 2nd edn. Lippincott-Raven, Philadelphia, PA, pp 1139–1146

    Google Scholar 

  • Weibel ER, Gomez DM (1962) Architecture of the human lung. Science 137:577–585

    PubMed  CAS  Google Scholar 

  • Weibel ER, Knight BW (1964) A morphometric study on the thickness of the pulmonary air-blood barrier. J Cell Biol 21:367–384

    PubMed  CAS  Google Scholar 

  • Weibel ER, Taylor CR, O’Neil JJ, Leith DE, Gehr P et al (1983) Maximal oxygen consumption and pulmonary diffusing capacity: a direct comparison of physiologic and morphometric measurements in canids. Respir Physiol 54:173–188

    PubMed  CAS  Google Scholar 

  • Weibel ER, Sapoval B, Filoche M (2005) Design of peripheral airways for efficient gas exchange. Respir Physiol Neurobiol 148:3–21

    PubMed  Google Scholar 

  • Weichert CK (1967) Elements of chordate anatomy. McGraw-Hill, New York

    Google Scholar 

  • Weidenfeld J, Shu W, Zhang L, Millar SE, Morissey EE (2002) Wnt-7b promoter is regulated by TTF-1, GATA6, and Foxa2 in lung epithelium. J Biol Chem 277:21061–21070

    PubMed  CAS  Google Scholar 

  • Weinstein M, Xu X, Ohyama K, Deng CX (1998) FGFR-3 and FGFR-4 function coorperatively to direct alveogenesis in the murine lung. Development 125:3615–3623

    PubMed  CAS  Google Scholar 

  • Weis-Fogh T (1964a) Diffusion in insect flight muscle, the most active tissue known. J Exp Biol 41:229–256

    PubMed  CAS  Google Scholar 

  • Weis-Fogh T (1964b) Functional design of the tracheal system of flying insects as compared with the avian lung. J Exp Biol 41:207–228

    CAS  Google Scholar 

  • Weis-Fogh T (1967) Respiration and tracheal ventilation in locusts and other flying insects. J Exp Biol 47:561–587

    PubMed  CAS  Google Scholar 

  • Wells GP (1949) Respiratory movements of Arenicola marina L Intermittent irrigation of the tube and intermittent aerial respiration. J Mar Biol Ass UK 28:447–464

    Google Scholar 

  • Wells GP (1966) The lugworm (Arenicola): a study in adaptation. Neth J Sea Res 3:294–313

    Google Scholar 

  • Wells MJ (1983) Circulation in the cephalopds. In: Saleuddin ASM, Wilbur KM (eds) The Mollusca, vol 5, Physiology, Part 2. New York, Academic Press, pp 239–290

    Google Scholar 

  • Wells DJ (1993) Muscle performance in hovering hummingbirds. J Exp Biol 178:39–57

    Google Scholar 

  • Wells RM (1999) Evolution of haemoglobin function: molecular adaptations to environment. Clin Exp Pharmacol Physiol 26:591–595

    PubMed  CAS  Google Scholar 

  • Wells MJ, Wells J (1984) The effects of reducing gill area on the capacity to regulate oxygen uptake and on metabolic scope in a cephalopod. J Exp Biol 108:393–401

    Google Scholar 

  • Wells MJ, Wells J (1985) Ventilation and oxygen uptake by Nautilus. J Exp Biol 118:297–312

    Google Scholar 

  • Wells MJ, O'Dor RK, Mangold K, Wells J (1983) Oxygen consumption in movement by Octopus. Mar Behav Physiol 9:289–303

    Google Scholar 

  • Welsch U (1979) Die Stellung der Reptilienlunge in der Phylogenese nach licht- und electronenmikroskopischen Untersuchungen an Alveolarepithel, am Bindegewebe und an der Innervation. PhD Med Thesis, University of Kiel, pp 1–49

    Google Scholar 

  • Welsch U (1981) Fine structure and enzyme histochemical observations on the respiratory epithelium of the caecilian lungs and gills. A contribution to the understanding of the evolution of the vertebrate respiratory epithelium. Arch Histol Jpn 44:117–133

    PubMed  CAS  Google Scholar 

  • Welsch U (1983) Phagocytosis in the amphibian lung. Anat Anz 154:323–327

    Google Scholar 

  • Welsch U, Aschauer B (1986) Ultrastructural observations on the lung of the emperor penguin (Apternodytes forsteri). Cell Tissue Res 243:137–144

    Google Scholar 

  • Wendel DP, Taylor DG, Albertine KH, Keating MT, Li DY (2000) Impaired distal airway development in mice lacking elastin. Am J Respir Cell Mol Biol 23:320–326

    PubMed  CAS  Google Scholar 

  • Wenger RH (2000) Mammalian oxygen sensing, signaling and gene regulation. J Exp Biol 203:1253–1263

    PubMed  CAS  Google Scholar 

  • Wenger RH, Stiehl DP, Camenisch G (2005) Integration of oxygen signaling at the consensus HRE (abstract). Sci STKE 306:p. re12

    Google Scholar 

  • Wert SE, Dey CR, Blair PA, Kimura S, Whitsett JA (2002) Increased expression of thyroid transcription factor-1 (TTF-1) in respiratory epithelial cells inhibits alveolarization and causes pulmonary inflammation. Dev Biol 242:75–87

    PubMed  CAS  Google Scholar 

  • West JB (1983) Climbing Mt Everest without oxygen: an analysis of maximal exercise during extreme hypoxia. Respir Physiol 52:265–274

    PubMed  CAS  Google Scholar 

  • West BJ (1987) Fractals, intermittency and morphogenesis. In: Degn H, Holden AV, Olsen LF (eds) Chaos in biological systems. Plenum, New York, pp 305–314

    Google Scholar 

  • West JB (1991) High altitude. In: Crystal RG, West JB (eds) The lung: scientific foundations. Raven, New York, pp 2093–2107

    Google Scholar 

  • West JB (2004) A century of pulmonary gas exchange. Am J Respir Crit Care Med 169:897–902

    PubMed  Google Scholar 

  • West JB (2008) Respiratory physiology: the essentials, 8th edn. Lippincott Williams and Wilkins, Baltimore, MA

    Google Scholar 

  • West JB (2010) Did differences in mitochondrial properties influence the evolution of avian and mammalian lungs? Am J Physiol Lung Cell Mol Physiol 299:L595–L596

    PubMed  CAS  Google Scholar 

  • West NH, Burggren WW (1982) Gill and lung ventilatory responses to steady-state aquatic hypoxia and hyperoxia in the bull-frog tadpole. Respir Physiol 47:165–176

    PubMed  CAS  Google Scholar 

  • West JB, Dollery CT (1965) Distribution of blood flow and ventilation-perfusion ratio in the lung, measured with radioactive CO2. J Appl Physiol 15:405–410

    Google Scholar 

  • West JB, Jones NL (1965) Effects of changes in topographical distribution of lung blood flow on gas exchange. J Appl Physiol 20:825–835

    PubMed  CAS  Google Scholar 

  • West NH, Jones DR (1975) Breathing movements in the frog Rana pipiens. I. The mechanical events associated with lung and buccal ventilation. Can J Zool 53:332–344

    PubMed  CAS  Google Scholar 

  • West JB, Wagner PD (1977) Pulmonary gas exchange. In: West JB (ed) Bioenineering aspect of the lung. Marcel, New York, pp 361–457

    Google Scholar 

  • West BJ, Barhava V, Goldberger AL (1986) Beyond the principle of similitude: renormalization in the bronchial tree. J Appl Physiol 60:1089–1097

    PubMed  CAS  Google Scholar 

  • West NH, Butler PJ, Bevan RM (1992) Pulmonary blood flow at rest and during swimming in the green turtle, Chelonia mydas. Physiol Zool 65:287–310

    Google Scholar 

  • West BJ, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    PubMed  CAS  Google Scholar 

  • West JB, Watson RR, Fu Z (2006) The honeycomb-like structure of the bird lung allows a uniquely thin blood-gas barrier. Respir Physiol Neurobiol 152:115–118

    PubMed  Google Scholar 

  • West JB, Watson RR, Fu Z (2007) Major differences in the pulmonary circulation between birds and mammals. Respir Physiol Neurobiol 157:382–390

    PubMed  Google Scholar 

  • Westneat MW, Betz O, Blob RW, Fezaa K, Cooper WJ, Lee WK (2003) Tracheal respiration in insects visualized with synchrotron X-ray imaging. Science 299:558–559

    PubMed  CAS  Google Scholar 

  • Wharton DA (2002) Life at the limits: organisms in extreme environments. Cambridge University Press, Cambridge

    Google Scholar 

  • Wheatly MG, Taylor EW (1979) Oxygen levels, acid-base status and heart rate during emersion of the shore crab Carcinus maenas (L) into air. J Comp Physiol 132B:305–311

    Google Scholar 

  • White FN, Kinney J, Siegfried WR, Kemp AC (1984) Thermal and gaseous conditions of hornbill nests. Natl Geogr Res Rep 17:931–936

    Google Scholar 

  • White AC, Xu J, Yin Y, Smith C, Schmid G, Ornitz DM (2006) FGF-9 and SHH signalling co-ordinate lung growth and development through regulation of distinct mesenchymal domains. Development 133:1507–1517

    PubMed  CAS  Google Scholar 

  • White CR, Blackburn TM, Terblanche JS, Marais E, Gibernau M, Chown SL (2007a) Evolutionary responses to discontinuous gas exchange in insects. Proc Natl Acad Sci USA 104:8357–8361

    PubMed  CAS  Google Scholar 

  • White AC, Lavine KJ, Ornitz DM (2007b) FGF-9 and SHH regulate mesenchymal VEGF-a expression and development of the pulmonary capillary network. Development 134:3743–3752

    PubMed  CAS  Google Scholar 

  • Whiting HP, Bone Q (1980) Ciliary cells in the epidermis of the larval Australian dipnoan, Neoceratodus. J Lin Soc Lond 68:125–137

    Google Scholar 

  • Whitman WB (2009) The modern concept of the prokaryote. J Bacteriol 191:2000–2005

    PubMed  CAS  Google Scholar 

  • Whitmore CM, Warren CE, Doudoroff P (1960) Avoidance reactions of salmonid and centrachid fishes to low oxygen concentrations. Trans Am Fish Soc 89:17–26

    Google Scholar 

  • Whitsett J (1998) A lungful of transcription factors. Nat Genet 20:7–8

    PubMed  CAS  Google Scholar 

  • Whitsett JA, Weaver TE (2002) Hydrophobic surfactant proteins in lung function and disease. N Engl J Med 347:2141–2148

    PubMed  Google Scholar 

  • Whitsett JA, Ohning BL, Ross G, Meuth J, Waever T et al (1986) Hydrophobic surfactant-associated protein in whole lung surfactant and its importance for biophysical activity in lung surfactant extracts used for replacement therapy. Pediatr Res 20:460–467

    PubMed  CAS  Google Scholar 

  • Whitsett JA, Nogee LM, Weaver TE, Horowitz AD (1995) Human surfactant protein B: structure, function, regulation, and genetic disease. Physiol Rev 75:749–757

    PubMed  CAS  Google Scholar 

  • Whitsett JA, Clark JC, Picard L, Tichelaar JW, Wert SE et al (2002) Fibroblast growth factor 18.influences proximal programming during lung morphogenesis. J Biol Chem 277:22743–22749

    PubMed  CAS  Google Scholar 

  • Wiesener MS, Jurgensen JS, Rosenberger C, Scholze CK, Horstrup JH et al (2003) Wide-spread hypoxia-inducible expression of HIF-2α in distinct cell populations of different organs. FASEB J 17:271–273

    PubMed  CAS  Google Scholar 

  • Wigglesworth VB (1953) Surface forces in the tracheal system of insects. Quart J Microsc Sci 94:507–522

    Google Scholar 

  • Wigglesworth VB (1954) Growth and regeneration in the tracheal system of an insect, Rhodnius prolixus (Hemiptera). Quart J Microsc Sci 95:115–137

    Google Scholar 

  • Wigglesworth VB (1983a) The physiology of insect tracheoles. In: Berridge MJ, Treherne JE, Wigglesworth VB (eds) Advances in insect physiology. Academic, London, pp 85–148

    Google Scholar 

  • Wigglesworth VB (1983b) The physiology of insect tracheoles. Adv Insect Physiol 17:86–148

    Google Scholar 

  • Wigglesworth VB (1984) Insect physiology. Chapman and Hall, London

    Google Scholar 

  • Wigglesworth VB, Lee WM (1982) The supply of oxygen to the flight muscles of insects: a theory of tracheole physiology. Tissue Cell 14:501–518

    PubMed  CAS  Google Scholar 

  • Wilder IW, Dunn ER (1920) The correlation of lunglessness in salamanders with a mountain brook habitat. Copeia 84:63–68

    Google Scholar 

  • Wilk R, Weizman I, Shilo BZ (1996) Trachealess encodes a bHLH-PAS protein that is an inducer of tracheal cell fates in Drosophila. Genes Dev 10:93–102

    PubMed  CAS  Google Scholar 

  • Willenbring JK, Blanckenburg F (2010) Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature (London) 465:211–214

    CAS  Google Scholar 

  • Williams HI (1958) Carbon dioxide poisoning. Report of eight cases, with two deaths. Br Med J 2:1012–1014

    PubMed  CAS  Google Scholar 

  • Williams RJP, da Silva JJRF (1978) High redox potential chemicals in biological systems. In: Williams RJP, da Silva JJRF (eds) New trends in bio-inorganic chemistry. Academic, London, pp 121–171

    Google Scholar 

  • Williams SEJ, Wootton P, Mason HS, Bould J, Iles DE et al (2004) Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Science 306:2093–2097

    PubMed  CAS  Google Scholar 

  • Willis D, Moore AR, Frederick R, Willoughby DA (1996) Heme oxygenase: a novel target for the modulation of the inflamatory response. Nat Med 2:87–90

    PubMed  CAS  Google Scholar 

  • Wilson TA (1967) Design of the bronchial tree. Nature (London) 1967(2):668–669

    Google Scholar 

  • Wilson SM (2008) The extracellular Ca +2 -sensing receptor branches out - a new role in lung morphogenesis. J Physiol 586:5847–5848

    PubMed  CAS  Google Scholar 

  • Wilson JM, Laurent P (2002) Fish gill morphology: inside out. J Exp Zool 293:192–213

    PubMed  Google Scholar 

  • Wilson RS, Sullivan SF, Malm JR, Bauman FO (1973) The oxygen cost of breathing following anesthesia and cardiac surgery. Anesthesiology 39:387–393

    PubMed  CAS  Google Scholar 

  • Wimsatt WA (1970) Biology of bats. Academic, London

    Google Scholar 

  • Wink DA, Mitchel JB (1998) Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25:434–456

    PubMed  CAS  Google Scholar 

  • Winterstein H (1925) Üeber die chemische Regulierrung der Atmung bei den Cephalopoden. Z Vergl Physiol 2:315–328

    CAS  Google Scholar 

  • Wirtz HR, Dobbs LG (1990) Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science 250:1266–1269

    PubMed  CAS  Google Scholar 

  • Wislocki GB, Belanger LF (1940) The lungs of the larger cetacea compared to those of smaller species. Science 78:289–297

    Google Scholar 

  • Withers PC (1992) Comparative animal physiology. Saunders, New York

    Google Scholar 

  • Wittenberg JB, Wittenberg BA (1989) Transport of oxygen in muscle. Annu Rev Physiol 51:857–878

    PubMed  CAS  Google Scholar 

  • Wittenberg JB, Wittenberg BA (2003) Myoglobin function assessed. J Exp Biol 206:2011–2030

    PubMed  CAS  Google Scholar 

  • Wodarz A, Nusse R (1998) Wnt signalling in development. Annu Rev Cell Dev Biol 14:59–88

    PubMed  CAS  Google Scholar 

  • Wolfenson D, Frei YF, Berman A (1982) Blood flow distribution during artificially induced respiratory hypocapnic alkalosis in the fowl. Respir Physiol 50:87–92

    PubMed  CAS  Google Scholar 

  • Wolfe-Simon F, Grzebyk D, Schofield O, Folkowski PG (2005) The role and evolution of superoxide dismutases in algae. J Physiol 41:453–465

    CAS  Google Scholar 

  • Wolfe-Simon F, Davies PCW, Anbar AD (2009) Did nature also choose arsenic? Int J Astrobiol 8:69–74

    CAS  Google Scholar 

  • Wolfe-Simon F, Blum JS, Kulp TR, Gordon GW, Hoeft SE, Pett-Ridge J et al (2010) A bacterium that can grow by using arsenic instead of phosphorus. Science. doi:DOI: 10.1126/science.1197258

    Google Scholar 

  • Wollman H, Smith TC, Stephen GW, Colton ET, Gleaton HE, Alexander SC (1968) Effects of extremes of respiratory and metabolic alkalosis on cerebral blood flow in man. J Appl Physiol 24:60–65

    PubMed  CAS  Google Scholar 

  • Wolvekamp HP, Baerends GP, Kok B, Mommaerts WFHM (1942) Oxygen and CO2 binding properties of the blood of the catfish (Sepia officinalis) and the common squid (Loligo vulgaris). Arch Neerl Physiol 26:203–218

    CAS  Google Scholar 

  • Wongtrakool C, Malpel S, Gerenstein J, Sedita J, Ramirez MI et al (2003) Down-regulation of retinoic acid receptor alpha signalling is required for sacculation and type-I cell formation in the developing lung. J Biol Chem 278:46911–46918

    PubMed  CAS  Google Scholar 

  • Wood SC (1971) Effects of metamorphosis on blood respiratory properties and erythrocyte adenosine triphosphate level of the salamander, Dicamptodon ensatus. Respir Physiol 12:53–65

    PubMed  CAS  Google Scholar 

  • Wood CM (1991) Branchial ion and acid-base transfer in freshwater teleost fish: environmental hyperoxia as a probe. Physiol Zool 64:68–102

    Google Scholar 

  • Wood CM (1993) Ammonia and urea metabolism and excretion. In: Evans D (ed) The physiology of fishes. CRC Press, Boca Raton, FL, pp 183–245

    Google Scholar 

  • Wood SC, Johansen K (1974) Respiratory adaptations to diving in the Nile monitor lizard, Varanus niloticus. J Comp Physiol 89:145–158

    CAS  Google Scholar 

  • Wood SC, Moberly WR (1970) The influence of temperature on the respiratory properties of iguana blood. Respir Physiol 10:20–29

    PubMed  CAS  Google Scholar 

  • Wood CM, Randall DJ (1973) The influence of swimming activity on sodium balance in the rainbow trout (Salmo gairdneri). J Comp Physiol 82:207–233

    Google Scholar 

  • Wood SC, Johansen K, Gatz RN (1978) Pulmonary blood flow, ventilation-perfusion ratio, and oxygen transport in a varanid lizard. Am J Physiol 233:R89–R93

    Google Scholar 

  • Woods HA, Smith JN (2010) Universal model for water costs of gas exchange by animals and plants. Proc Natl Acad Sci USA 107:8469–8474

    PubMed  CAS  Google Scholar 

  • Woodward JD, Maina JN (2005) A 3-digital reconstruction of the components of the gas exchange tissue of the lung of the Muscovy duck, Cairina moschata. J Anat 6:477–492

    Google Scholar 

  • Woodward JD, Maina JN (2008) Study of the structure of the air- and blood capillaries of the gas exchange tissue of the avian lung by serial secti on three-dimensional reconstruction. J Microsc 230:84–93

    PubMed  CAS  Google Scholar 

  • Wootton RJ (1981) Paleozoic insects. Annu Rev Entomol 26:319–344

    Google Scholar 

  • Wootton RJ, Kukalova-Peck J (2000) Flight adaptation in Paleozoic Palaeoptera (Insecta). Biol Rev 75:129–167

    PubMed  CAS  Google Scholar 

  • Wright JR (1998) Host defense functions of surfactant. In: Rooney SA, Austin SA (eds) Lung surfactant: cellular and molecular processing. RG Landes Company, Texas, pp 191–214

    Google Scholar 

  • Wright JR (2003) Pulmonary surfactant: a front line of lung host defense. J Clin Invest 111:1453–1455

    PubMed  CAS  Google Scholar 

  • Wright JR, Wager RE, Hawgood S, Dobbs L, Clements JA (1987) Surfactant apoprotein Mr = 26,000-36,000 enhances uptake of liposomes by type II cells. J Biol Chem 262:2888–2894

    PubMed  CAS  Google Scholar 

  • Wright DT, Cohn LA, Li H, Fischer B, Li CM, Adler KB (1994) Interaction of oxygen radicals with airway epithelium. Environ Health Perspect 102:85–90

    PubMed  CAS  Google Scholar 

  • Wu RSS (2002) Hypoxia: from molecular responses to ecosystem responses. Mar Pollut Bull 45:35–45

    PubMed  CAS  Google Scholar 

  • Wu L, Wang R (2005) Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev 57:585–630

    PubMed  CAS  Google Scholar 

  • Wu Z, Puigserver P, Anderson U, Zhang C, Adelmant G et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic activator PGC-1. Cell 98:115–124

    PubMed  CAS  Google Scholar 

  • Xue C, Reynolds PR, Johns RA (1996) Developmental expression of NOS isoforms in fetal rat lung: implications for transitional circulation and pulmonary angiogenesis. Am J Physiol Lung Cell Mol Physiol 270:L88–L100

    CAS  Google Scholar 

  • Yalden DW, Morris PA (1975) The lives of bats. The New York Times Book Company, New York

    Google Scholar 

  • Yamaguchi TP, Dumont DJ, Conlon RA, Breitman MI, Rossant J (1993) Flk-1, and flt-1-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 111:489–498

    Google Scholar 

  • Yamamoto H, Yun EJ, Gerber HP, Ferrara N, Whitsett JA, Vu TH (2007) Epithelial-vascular cross talk mediated by VEGF-A and HGF signalling directs primary septae formation during distal lung morphogenensis. Dev Biol 308:44–53

    PubMed  CAS  Google Scholar 

  • Yan H, Du J, Tang C (2004) The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension I rats. Biochem Biophys Res Commun 313:22–27

    PubMed  CAS  Google Scholar 

  • Yang L, Naltner A, Yan C (2003) Overexpression of dominant negative retinoic acid receptor alpha causes alveolar abnormality in transgenic neonatal lungs. Endocrinology 144:3004–3011

    PubMed  CAS  Google Scholar 

  • Yates LL, Schnatwinkel C, Murdoch JN, Bogani D, Formstone CJ et al (2010) The PCP genes Celsr-1 and Vangl-2 are required for normal lung branching morphogenesis. Hum Mol Genet 19:2251–2267

    PubMed  CAS  Google Scholar 

  • Yin Y, White AC, Huh SH, Hilton MJ, Kanazawa H et al (2008) An AFT-Wnt gene regulatory network controls lung mesenchyme development. Dev Biol 319:426–436

    PubMed  CAS  Google Scholar 

  • Yonetani T, Yamamoto H, Erman JE, Leigh JS, Reed GH (1972) Electromagnetic properties of hemoproteins. V. Optical and electron paramagnetic resonance characteristics of nitric oxidase derivatives of matalloporphyrin-apohemoglobin complexes. J Biol Chem 247:2447–2455

    PubMed  CAS  Google Scholar 

  • Yonge CM (1947) The pallial organs in the aspidobranch Gastropoda and their evolution throughout the Mollusca. Phil Trans R Soc Lond B Biol Sci 232:443–518

    CAS  Google Scholar 

  • Youlson JH, Freeman PA (1976) Morphology of the gills of larval and parasitic adult sea lamprey, Petromyzon marinus L. J Morphol 149:73–104

    Google Scholar 

  • Young LJ, Caughey WS (1986) Oxygenation of carbon dioxide by bovine heart cytochrome c oxidase. Biochemistry 25:152–161

    PubMed  CAS  Google Scholar 

  • Young RE, Coyer PE (1979) Phase co-ordination in the cardiac and ventilatory rhythms of the lobster Momarus americanus. J Exp Biol 62:53–74

    Google Scholar 

  • Youngson C, Nurse CA, Yeger H, Cutz E (1993) Oxygen sensing in airway chemoreceptors. Nature (London) 365:153–155

    CAS  Google Scholar 

  • Youvan D, Mars B (1987) Molecular mechanisms of photosynthesis. Sci Am 256:42–50

    Google Scholar 

  • Yuan X, Chen Z, Xiao S, Zhou C, Hua H (2011) An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature (London) 470:390–393

    CAS  Google Scholar 

  • Yun Z, Maecker HL, Johnson RS, Giaccia AJ (2002) Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev Cell 2:331–341

    PubMed  CAS  Google Scholar 

  • Zaccone G, Fasulo S, Ainis L, Licata A (1995) Gross anatomy, histology and immunohistochemistry of respiratory organs of air-breathing and teleost fishes. In: Pastor LM (ed) Histology, ultrastructure and immunohistochemistry of respiratory organs in non-mammalain vertebrates. Servicio de Publicaciones de la Universidad de Murcia, Spain, pp 15–33

    Google Scholar 

  • Zaccone G, Fasulo S, Ainis L, Licata A (1997) Paraneurons in the gills and airways of fishes. Microsc Res Tech 37:4–12

    PubMed  CAS  Google Scholar 

  • Zelzer E, Levy Y, Kahan C, Shilo BZ, Rubinstein M, Cohen B (1998) Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1β/ARNT. EMBO J 17:5085–5094

    PubMed  CAS  Google Scholar 

  • Zemojtel T, Wade RC, Dandekar T (2003) In search of the prototype of nitric oxide synthetase. FEBS 554:1–5

    CAS  Google Scholar 

  • Zeng X, Wert SE, Federici R, Peters KG, Whitsett JA (1998) VEGF enhances pulmonary vasculogenesis and disrupts lung morphogenesis in vivo. Dev Dyn 211:215–227

    PubMed  CAS  Google Scholar 

  • Zeng X, Gray M, Stahlman MT, Whitsett JA (2001) TGF-beta1 perturbs vascular development and inhibits epithelial differentiation in fetal lung in vivo. Dev Dyn 221:289–301

    PubMed  CAS  Google Scholar 

  • Zerkle AL, House CH, Brantley SL (2005) Biogeochemical signatures through time as inferred from whole microbial genomes. Am J Sci 305:467–502

    CAS  Google Scholar 

  • Zhang M, Zhong H, Vollmer C, Nurse CA (2000) Co-release of ATP and ACH mediates hypoxic signaling at rat carotid body chemoreceptors. J Physiol 525:143–158

    PubMed  CAS  Google Scholar 

  • Zhang Z, Huang H, Liu P, Tang C, Wang J (2007) Hydrogen sulfide contributes to cardioprotection during ischemia-reperfusion injury by opening kATP channels. Can J Physiol Pharmacol 85:1248–1253

    PubMed  CAS  Google Scholar 

  • Zhao Y, Young SL (1995) Tenascin in rat lung development: in situ localization and cellular sources. Am J Physiol 269:482–491

    Google Scholar 

  • Zhao J, Bu D, Lee M, Slavkin HC, Hall FL, Warburton D (1996) Abrogation of transforming growth factor-beta type-II receptor stimulates embryonic mouse lung branching morphogenesis in culture. Dev Biol 180:242–257

    PubMed  CAS  Google Scholar 

  • Zhao J, Sime PJ, Bringas P Jr, Gauldie J, Warburton D (1998) Epithelium-specific adenoviral transfer of a dominant-negative mutant TGF-beta type-II receptor stimulates embryonic lung branching morphogenesis in culture and potentiates EGF and PDGF-A. Mech Dev 72:89–100

    PubMed  CAS  Google Scholar 

  • Zhao-Xian W, Ning-Zhen S, Wei-Ping M, Jie-Ping C, Gong-Qing H (1991) The breathing pattern and heart rates of Alligator sinensis. Comp Biochem Physiol 98A:77–87

    Google Scholar 

  • Zheng J, Liu K, Kang Z, Cai J, Liu W et al (2010) Saturated hydrogen saline protects the lung against oxygen toxicity. Undersea Hyperb Med 37:185–192

    PubMed  CAS  Google Scholar 

  • Zhenhao D, Sun R (2003) An improved model for calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 522 K and from 0 to 2000 bar. Chem Geol 193:260–271

    Google Scholar 

  • Zhou L, Dey CR, Wert SE, Whitsett JA (1996) Arrested lung morphogenesis in transgenic mice bearing an SP-C-TGF-beta1 chimeric gene. Dev Biol 175:227–238

    PubMed  CAS  Google Scholar 

  • Zhou L, Dey CR, Wert SE, Yan C, Costa RH, Whitsett JA (1997) Hepatocyte nuclear factor-3 beta limits cellular diversity in the developing respiratory epithelium and alters lung morphogenesis in vivo. Dev Dyn 210:305–314

    PubMed  CAS  Google Scholar 

  • Zhou M, Sutliff RL, Paul RJ, Lorenz JN, Hoying JB et al (1998) Fibroblast growth factor-2 control of vascular tone. Nature (Med) (London) 4:201–207

    CAS  Google Scholar 

  • Zhuravlev A, Wood R (1996) Anoxia as the cause of the mid-Early Cambrian (Botomian) extinction event. Geology 24:311–314

    CAS  Google Scholar 

  • Zinkler D (1966) Comparative metabolism of invertebrates. Z Vergl Physiol 52:99–144

    Google Scholar 

  • Zotin AI (1984) Bioenegetic direction of the evolutionary process of organisms. In: Lamprecht I, Zotin AI (eds) Thermodynamics and regulation of biological processes. Nauka, Moscow, pp 269–274

    Google Scholar 

  • Zuo YY, Veldhuizen RA, Neumann AW, Petersen NO, Possmayer F (2008) Current perspectives in pulmonary surfactant inhibition, enhancement and evaluation. Biochim Biophys Acta 1778:1947–1977

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John N. Maina .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maina, J.N. (2011). Functional Designs of the Gas Exchangers. In: Bioengineering Aspects in the Design of Gas Exchangers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20395-4_5

Download citation

Publish with us

Policies and ethics