Skip to main content

Fundamental Principles of Gas Exchangers

  • Chapter
  • First Online:
Bioengineering Aspects in the Design of Gas Exchangers
  • 506 Accesses

Abstract

Inaugurating as a simple, plain cell membrane in the primeval unicellular prokaryotes and progressing to the most advanced respiratory systems of the endothermic-homeothems, i.e., the bronchioalveolar lung of mammals and the parabronchial one of birds, the designs of gas exchangers have occurred based on remarkably similar bioengineering principles. The gas exchangers have developed under dynamic environmental conditions, especially those of shifting O2 and CO2 levels (Sects. 1.2 and 1.3). In its broadest context, respiration comprises spatiotemporally coordinated biomechanical, biophysical, behavioral, and physiological processes. Together, they effect movement of two vectorial quantities in opposite directions – influx of O2 from the environment into the organism and efflux of CO2 to the outside. More specifically, external respiration entails the acquisition of O2 and in derived animals its transport through properly configured airways and vasculature while internal respiration involves the utilization of O2 at the cellular level, specifically in the mitochondria, to generate energy mainly in form of ATP. Carbon dioxide (CO2) and water (H2O) are the secondary products of internal respiration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandrou MA, Oliveira C, Maillard M, McGill RAR, Newton J et al (2011) Competition and phylogeny determine community structure in Müllerian co-mimics. Nature (London) 469:84–88

    Article  CAS  Google Scholar 

  • Al-Wassia AH, Innes AJ, Whiteley NH, Taylor EW (1989) Aerial and aquatic respiration in the ghost crab Ocypode saratan. I Fine structure of respiratory surfaces, their ventilation and perfusion; oxygen consumption and carbon dioxide production. Comp Biochem Physiol 94A:755–764

    Article  Google Scholar 

  • Andrews EA (1955) Some minute movements in protoplasm. Biol Bull 108:121–124

    Article  Google Scholar 

  • Andrews EB, Taylor PM (1988) Fine structure, mechanism of heart function and hemodynamics in the prosobranch gastropod mollusc Littorina littorea (L). J Comp Physiol B 158:247–262

    Article  Google Scholar 

  • Angersbach D, Decker H (1978) Oxygen transport in crayfish blood: effect of thermal acclimation and short-term fluctuations related to ventilation and cardiac performance. J Comp Physiol 123B:105–112

    Google Scholar 

  • Axelsson M (2001) The crocodilian heart; more controlled than we thought? Exp Physiol 86(6):785–789

    Article  PubMed  CAS  Google Scholar 

  • Axelsson M, Holm S, Nilsson S (1989) Flow dynamics of the crocodilian heart. Am J Physiol 256:R875–R879

    PubMed  CAS  Google Scholar 

  • Bacigalupe LD, Bozinovic F (2002) Design, limitations and systained metabolic rate: lessons from small animals. J Exp Biol 205:1–7

    Google Scholar 

  • Bastacky J, Goerke J, Lee CY, Yager D, Kenaga L et al (1993) Alveolar lining liquid layer is thin and continuous: low-temperature scanning electron microscopy of normal rat lung. Am Rev Respir Dis 147:148

    Google Scholar 

  • Bastacky J, Lee CY, Goerke J, Koushafar H, Yager D et al (1995) Alveolar lining layer is thin and continuous: low temperature scanning electron microscopy of rat lung. J Appl Physiol 79:1615–1628

    PubMed  CAS  Google Scholar 

  • Beadle LC (1957) Respiration in the African swampworm Alma emini Mich. J Exp Biol 34:1–10

    CAS  Google Scholar 

  • Beadle LC (1974) The inland waters of tropical Africa: an introduction to tropical limnology. Longman, London

    Google Scholar 

  • Belkin DA (1968) Aquatic respiration and underwater survival of two freshwater turtle species. Respir Physiol 4:1–14

    Article  PubMed  CAS  Google Scholar 

  • Belman BW (1975) Some aspects of the circulatory physiology of the spiny lobster Panulirus interruptus. Mar Biol 29:295–305

    Article  Google Scholar 

  • Berg K (1951) On the respiration of some molluscs from running and stagnant water. Ann Biol 33:561–567

    Google Scholar 

  • Blatchford JG (1971) Hemodynamics of Carcinus maenas (L). Comp Biochem Physiol 39A:193–202

    Article  Google Scholar 

  • Booth DT (1995) Oxygen availability and embryonic development in sand snail (Polinices sordidus) egg masses. J Exp Biol 198:241–247

    PubMed  Google Scholar 

  • Borradaille LA, Potts FA, Eastham LES, Saunders JT (1963) Invertebrata (Revised by GA Kerkut), 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Bourne GB, Redmond JR (1977) Hemodynamics in the pink albarone. Haliotis corrugata. I. Pressure relations and pressure gradients in intact animals. J Exp Zool 200:9–16

    Article  Google Scholar 

  • Bradford SM, Taylor AC (1982) The respiration of Cancer pagurus under normoxic and hypoxic conditions. J Exp Biol 97:273–288

    Google Scholar 

  • Braulin EA, Wahler GM, Swayze CR, Lucas RV, Fox IJ (1986) Myoglobin facilitated oxygen diffusion maintains mechanical function of mammalian cardiac muscle. Cardiovasc Res 20:627–636

    Article  Google Scholar 

  • Brunelle JK, Bell EL, Quesada NM, Vercauteran K, Tiranti V et al (2005) Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 1:409–414

    Article  PubMed  CAS  Google Scholar 

  • Bugge J (1960) The heart of the African lungfish, Protopterus. Vidensk Meddr Dan Naturh Foren 123:193–210

    Google Scholar 

  • Burger RE, Meyer M, Werner G, Scheid P (1979) Gas exchange in the parabronchail lung of birds: experiments in unidirectionally ventilated ducks. Respir Physiol 36:19–37

    Article  PubMed  CAS  Google Scholar 

  • Burggren WW, Feder ME (1985) Skin breathing in vertebrates. Sci Am 253:106–118

    Article  Google Scholar 

  • Burggren WW, Pinder AW (1991) Ontogeny of cardiovascular and respiratory physiology in lower vertebrates. Ann Rev Physiol 53:107–135

    Article  CAS  Google Scholar 

  • Burggren WW, Roberts J (1991) Respiration and metabolism. In: Prosser CL (ed) Environmental and metabolic animal physiology. Wiley, New York, pp 353–435

    Google Scholar 

  • Burggren WW, McMahon BR, Costerton JW (1974) Branchial water- and blood-flow patterns and the structure of the gills of the crayfish Procambarus clarkii. Can J Zool 52:1511–1518

    Article  PubMed  CAS  Google Scholar 

  • Burggren WW, Pinder AW, McMahon BR, Wheatly M, Doyle M (1985) Ventilation, circulation and their interactions in the land crabs, Cardisoma guanhumi. J Exp Biol 117:133–154

    Google Scholar 

  • Burns B, Gurtner GH (1973) A specific carrier for O2 and CO2 in the lung and placenta. Drug Metab Dispos 1:374–379

    PubMed  CAS  Google Scholar 

  • Burns B, Gurtner GH, Peavy H, Cha YN (1975) A specific carrier for oxygen and carbon dioxide. In: Junod AF, Haller R (eds) Lung metabolism. Academic, New York, pp 159–184

    Google Scholar 

  • Burns B, Young-Nam C, Purcell JM (1976) A specific carrier for O2 and CO2 in the lung: effects of volatile anaethetics on gas transfer and drug metabolism. Chest 69:316–321

    PubMed  CAS  Google Scholar 

  • Butler PJ (1991) Exercise in birds. J Exp Biol 160:233–262

    Google Scholar 

  • Calder WA (1984) Size, function, and life history. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Cameron JN, Mecklenburg TA (1973) Aerial gas exchange in the coconut crab, Birgus latro, with some notes on Gecarcoidea lalandii. Respir Physiol 19:245–261

    Article  PubMed  CAS  Google Scholar 

  • Cameron JN, Randall DJ, Davis JC (1977) Regulation of the ventilation-perfusion ratio in gills of Dasyatis sabina and Squalus suckleyi. Comp Biochem Physiol 39A:505–519

    Google Scholar 

  • Carroll RL (1970) Quantitative aspects of the amphibian-reptilian transition. Forma et Functio 3:165–178

    Google Scholar 

  • Chapman CB, Jensen D, Wildenthal K (1963) On circulatory control mechanisms in the Pacific hagfish. Circ Res 12:427–440

    CAS  Google Scholar 

  • Clarke MR (1962) Respiratory and swimming movements in the cephalopod Crachia scabra. Nature (London) 196:351–352

    Article  Google Scholar 

  • Comroe JH (1974) Physiology of respiration: an introductory text. Year Book Medical, Chicago, IL

    Google Scholar 

  • Crapo JD, Crapo RO (1983) Comparison of total lung diffusion capacity and the membrane component of diffusion capacity as determined by physiologic and by morphometric techniques. Respir Physiol 51:183–194

    Article  PubMed  CAS  Google Scholar 

  • Cunningham DJ (1986) The oxygen secretion controversy. Lancet 1(8482):683

    Article  PubMed  CAS  Google Scholar 

  • Dahr E (1924) Die Atmungsbewegungen der Landpulmonaten. Lund Univ Aarsskr NF Avd 20:1–19

    Google Scholar 

  • Dahr E (1927) Studien uber die Respirationder Landpulmonaten. Lund Univ Aarsskr NF Avd 23:1–118

    Google Scholar 

  • DeFur PL, Mangum CP (1979) The effects of environmental variables on the heart rate of invertebrates. Comp Biochem Physiol A 62:283–294

    Article  Google Scholar 

  • DeFur PL, Pease AL (1988) Metabolic and Respiratory compensation during long term hypoxia in blue crabs, Callinectes sapidus. In: Lynch MP, Krome EC (eds) Understanding the estuary, advances in chesapeake bay research, Chesapeake Research Consortium Publication 129. CRC Press, Edgewater, MD

    Google Scholar 

  • DeLaney RG, Fishman AP (1977) Analysis of lung ventilation in the aestivating lungfish Protopterus aethiopicus. Am J Physiol 233:R181–R187

    PubMed  CAS  Google Scholar 

  • DeLaney RG, Lahiri GS, Fishman AP (1974) Aestivation of the African lungfish Protopterus aethiopicus: cardiovascular and respiratory functions. J Exp Biol 61:111–118

    PubMed  CAS  Google Scholar 

  • Denton EJ, Shaw TI, Gilpin-Brown JB (1958) Bathyscaphoid squid. Nature (London): 1810

    Google Scholar 

  • Duval A (1983) Heartbeat and blood pressure in terrestrial slugs. Can J Zool 61:987–992

    Article  Google Scholar 

  • Dyer MF, Uglow RF (1978) Gill chamber ventilation and scaphognathite movements in Crangon crangon (L). J Exp Mar Biol Ecol 31:195–207

    Article  Google Scholar 

  • Farrell AP (1991) Circulation of body fluids. In: Prosser CL (ed) Environmental and metabolic animal physiology. Wiley, New York, pp 509–558

    Google Scholar 

  • Farrell AP, Randall DJ (1978) Air breathing mechanisms in two Amazonian teleosts, Arapaima gigas and Hoplerythrinus unitaeniatus. Can J Zool 56:939–945

    Article  Google Scholar 

  • Farrell AP, Daxboeck C, Randall DJ (1979) The effect of input pressure and flow on the pattern and resistance to flow in isolated perfused gills. J Comp Physiol 133:233–248

    Google Scholar 

  • Farrell AP, Sobin SS, Randall DJ, Crosby S (1980) Sheet blood flow in the secondary lamellae of teleost gills. Am J Physiol 239:R428–R441

    PubMed  CAS  Google Scholar 

  • Fincke T, Paul R (1989) Booklung function in arachnids. III. The function and control of the spiracles. J Comp Physiol 159B:433–441

    Google Scholar 

  • Fox H, Simmonds BG, Washbourn R (1935) Metabolic rates of ephemerid nymphs from swiftly flowing and from still waters. J Exp Biol 12:179–184

    Google Scholar 

  • Fraenkel G, Herford GVB (1938) The respiration of insects through the skin. J Exp Biol 15:266–280

    CAS  Google Scholar 

  • Frederiq L (1878) Recherches sur la physiologie de poulpe commun. Arch zool exp et gen 7:535–583

    Google Scholar 

  • Freites JA, Choi Y, Tobias DJ (2003) Molecular dynamics simulations of a pulmonary surfactant protein B peptide in a lipid monolayer. Biophys J 84:2169–2180

    Article  PubMed  CAS  Google Scholar 

  • French MJ (1988) Invention and evolution design in nature and engineering. Cambridge University Press, Cambridge

    Google Scholar 

  • Gatz RN, Crawford EC, Piiper J (1974) Respiratory properties of the blood of lungless and gill-less salamander, Desmognathus fuscus. Respir Physiol 20:33–41

    Article  PubMed  CAS  Google Scholar 

  • Gehr P, Mwangi DK, Amman A, Maloiy GMO, Taylor CR, Weibel ER (1981) Design of the mammalian respiratory system: V. Scaling morphometric diffusing capacity to body mass: wild and domesic animals. Respir Physiol 44:61–86

    Article  PubMed  CAS  Google Scholar 

  • Ghiretti F (1966) Respiration. In: Wilbur KM, Yonge CM (eds) Physiology of mollusca. Academic, London, pp 175–298

    Google Scholar 

  • Gosline JM, Steeves JD, Harman AD, deMont ME (1983) Patterns of circular and radial muscle activity in respiration and jetting of the squid Loligo opalescens. J Exp Biol 104:97–109

    Google Scholar 

  • Greenaway P, Taylor HH (1976) Aerial gas exchange in Australian arid-zone crab, Parathelphusa transversa, von Mertens. Nature (London) 262:711–713

    Article  CAS  Google Scholar 

  • Gregersen MI, Rawson RA (1959) Blood volume. Physiol Rev 39:307–342

    PubMed  CAS  Google Scholar 

  • Groebe K, Thews G (1987) Time courses of erythrocytic oxygenation in capillaries of the lung: lower and upper bounds on red cell transit times. Adv Exp Med Biol 215:165–169

    PubMed  CAS  Google Scholar 

  • Hallam JF, Dawson TJ, Holland RAB (1989) Gas exchange in the lung of a dasyurid marsupial: morphometric estimation of diffusion capacity and blood oxygen uptake kinetics. Respir Physiol 77:309–322

    Article  PubMed  CAS  Google Scholar 

  • Harvey EN (1928) The oxygen consumption of luminous bacteria. J Comp Physiol 11:469–475

    CAS  Google Scholar 

  • Haughton TM, Kerkut GA, Munday KA (1958) The oxygen dissociation and alkaline denaturation of hemoglobin from two species of earthworms. J Exp Biol 35:360–368

    CAS  Google Scholar 

  • Hazelhoff EH (1939) Über die Ausnützung des Sauerstoffs bei verschiedenen Wasserrtieren. Z Vergl Physiol 26:306–327

    Google Scholar 

  • Henry JD, Fedde MR (1970) Pulmonary circulatory time in the chicken. Poult Sci 49:1286–1293

    PubMed  CAS  Google Scholar 

  • Henze M (1910) Ueber den Einfluss des Sauerstoffdrucks auf den Gaswechsel einiger Meerrestiere. Biochem Z 26:255–278

    CAS  Google Scholar 

  • Hoeger U, Mommsen TP (1985) Role of free amino acids in the oxidative metabolism of cephalopod hearts. Circulation, respiration, and metabolism. Springer, Berlin, pp 367–376

    Google Scholar 

  • Holland RAB, Forster RE (1966) The effect of size of red cells on the kinetics of their oxygen uptake. J Gen Physiol 49:727–742

    Article  PubMed  CAS  Google Scholar 

  • Hughes GM (1972a) Distribution of oxygen tension in the blood and water along the secondary lamella of the ice-fish gill. J Exp Biol 56:481–492

    PubMed  CAS  Google Scholar 

  • Hughes GM (1982) An introduction to the study of gills. In: Houlihan DF, Rankin JC, Shuttleworth TJ (eds) Gills. Cambridge University Press, Cambridge, pp 1–24

    Google Scholar 

  • Hughes GM, Shelton G (1958) The mechanism of gill ventilation in three freshwater teleosts. J Exp Biol 35:807–823

    Google Scholar 

  • Hughes GM, Knight B, Scammel CA (1969) The distribution of PO2 and hydrostatic pressure changes within the branchial chambers in relation to gill ventilation in the shore crab Carcinus maenas L. J Exp Biol 51:203–220

    Google Scholar 

  • Hyman LH (1951) The invertebrates: platyhelminthes and rynchocoela, vol II, The acoelomate bilateria. McGraw-Hill, New York

    Google Scholar 

  • Jensen FB, Weber RE (1985) Kinetics of the acclimational responses of tench to combined hypoxia and hypercapnia. I. Respiratory responses. J Comp Physiol B 156:197–203

    Article  Google Scholar 

  • Johansen K (1960) Circulation in the hagfish, Myxine glutinosa L. Biol Bull 118:289–295

    Article  Google Scholar 

  • Johansen K, Lenfant C (1966) Gas exchange in the Cephalopod, Octopus dofleini. Am J Physiol 210:910–918

    PubMed  CAS  Google Scholar 

  • Johansen K, Martin AW (1966) Circulation in the giant earthworm. Glossoscolex giganteus. I. Contractile processes and pressure gradients in the large blood vessels. J Exp Biol 43:333–347

    Google Scholar 

  • Jones JD (1961) Aspects of respiration in Planorbis corneus L and Lymnaea stagnalis L. (Gastropoda: Pulmonata). Comp Biochem Physiol 4:1–29

    Article  PubMed  CAS  Google Scholar 

  • Jones HD (1983) Circulatory systems of gastropods and bivalves. In: Saleuddin ASM, Wilbur MW (eds) The Mollusca, vol 5, Physiology, Part 2. Academic, London, pp 189–238

    Google Scholar 

  • Jones DR, Johansen K (1972) The blood vascular system of birds. In: Farner DS, King JR (eds) Avian biology, vol II. Academic, New York, pp 157–285

    Google Scholar 

  • Jones DR, Randall DJ (1978) The respiratory and circulatory systems during exercise. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 7. Academic, New York, pp 425–501

    Google Scholar 

  • Karas RH, Taylor CR, Jones JH, Linstedt SL, Reeves RB, Weibel ER (1987) Adaptive variation in the respiratory system in relation to energetic demand. VII. Flow of oxygen across the pulmonary gas exchanger. Respir Physiol 69:101–115

    Article  Google Scholar 

  • Kleiber M (1965) Respiratory exchange and metabolic rate. In: Fenn WO, Rahn H (eds) Handbook of physiology, Section 3 Respiration, vol II. American Physiological Society, Washington DC, pp 927–938

    Google Scholar 

  • Knight J, Knight R (1986) The blood vascular system of the gills of Pholas dactylus L. (Mollusca, Bivalvia, Eulamellibranchia). Phil Trans R Soc Lond B Biol Sci 313:509–523

    Article  Google Scholar 

  • Krogh A (1941) The comparative physiology of respiratory mechanisms. University of Pennsylvania Press, Philadelphia, PA

    Google Scholar 

  • Lambertsen CJ (1961) Respiration. In: Bard P (ed) Medical physiology. Mosby, St Louis, MO

    Google Scholar 

  • Langille BL, Jones DR (1975) Central cardiovascular dynamics of ducks. Am J Physiol 228:1856–1861

    PubMed  CAS  Google Scholar 

  • Laverack MS (1963) The physiology of earthworms. Pergamon, Oxford

    Google Scholar 

  • Lessard J, Val AL, Aota S, Randall DJ (1995) Why is there no carbonic anhydrase activity available to fish plama? J Exp Biol 1995:31–38

    Google Scholar 

  • Levy MN, Stanton BA, Koeppen BM (2006) Berne and levy principles of physiology, 4th edn. Elsevier, Philadelphia, PA

    Google Scholar 

  • Lindroth A (1939) Beobachtungen an capitelliden, besonders hinsichtlich ihrer respiration. Zool Anz 127:285–297

    CAS  Google Scholar 

  • Lindstedt SL (1984) Pulmonary transit time and diffusing capacity in mammals. Am J Physiol 246:R384–R388

    PubMed  CAS  Google Scholar 

  • Lockwood APM (1968) Aspects of physiology of Crustacea. Oliver Boyd, Edinburgh

    Google Scholar 

  • Lomholt JP, Johansen K, Maloiy GMO (1975) Is aestivating lungfish the first vertebrate with sunctional breathing? Nature (London) 257:787–788

    Article  Google Scholar 

  • Longmuir IS (1976) Search for new tissue oxygen carriers. In: oxygen and physiological function. Professional Information Library, Dallas, pp 213–254

    Google Scholar 

  • Longmuir IS, Bourke A (1960) The measurement of the diffusion of oxygen through respiring tissue. Biochem J 76:225–229

    PubMed  CAS  Google Scholar 

  • Luckett WP (1976) Ontogeny of amniote fetal membranes and their applications to phylogeny. In: Hecht MK, Goody PC, Hecht BM (eds) The major patterns in vertebrate evolution. Plenum, London, pp 439–516

    Google Scholar 

  • Lutz BR (1930) The effect of low oxygen tension on the pulsations of the isolated holothurian cloaca. Biol Bull 58:74–84

    Article  Google Scholar 

  • Lutz PL, Longmuir IS, Tuttle JV, Schmidt-Nielsen K (1973) Dissociation curve of bird blood and effect of red cell oxygen consumption. Respir Physiol 17:269–275

    Article  PubMed  CAS  Google Scholar 

  • Madan JJ, Wells MJ (1996) Why squid can breathe easy. Nature (London) 380:590

    Article  CAS  Google Scholar 

  • Maina JN (1989a) Morphometrics of the avian lung. In: King AS, McLelland J (eds) Form and function in birds, vol 4. Academic, London, pp 307–368

    Google Scholar 

  • Maina JN (1989b) The morphology of the lung of a tropical terrestrial slug, Trichotoxon copleyi (Mollusca: Gastropoda; Pulmonata): a scanning and transmission electron microscopic study. J Zool (London) 217:335–366

    Article  Google Scholar 

  • Maina JN (1990a) The morphology of the gills of the African freshwater crab Potamon niloticus (Ortmann-Crustacea-Brachyura-Potamonidae): a scanning and transmission electron microscopic study. J Zool (London) 221:499–515

    Article  Google Scholar 

  • Maina JN (1994) Comparative pulmonary morphology and morphometry: the functional design of respiratory systems. In: Gilles R (ed) Advances in comparative and environmental physiology, vol 20. Springer, Heidelberg, pp 111–232

    Google Scholar 

  • Maina JN (1998) The gas exchangers: structure, function, and evolution of the respiratory processes. Springer, Heidelberg

    Google Scholar 

  • Maina JN, King AS (1984) The structural-functional correlation in the design of of the bat lung. J Exp Biol 111:43–63

    PubMed  CAS  Google Scholar 

  • Maina JN, Maloiy GMO (1986) The morphology of the respiratory organs of the African air-breathing catfish (Clarias mossambicus): a light, and electron microscopic study, with morphometric observations. J Zool (London) 209:421–445

    Article  Google Scholar 

  • Maina JN, Maloiy GMO (1998) Adaptations of a tropical swampworm, Alma emini, for subsistence in a H2S-rich habitat: evolution of endosymbiotic bacteria, sulfide metabolizing bodies, and novel processes of elimination of neutralized sulfide complexes. J Struct Biol 122:257–266

    Article  PubMed  CAS  Google Scholar 

  • Maina JN, West JB (2005) Thin and strong! The bioengineering dilemma in the structural and functional design of the blood-gas barrier. Physiol Rev 85:811–844

    Article  PubMed  CAS  Google Scholar 

  • Maina JN, King AS, Settle G (1989a) An allometric study of the pulmonary morphometric parameters in birds, with mammalian comparison. Phil Trans R Soc Lond B Biol Sci 326:1–57

    Article  CAS  Google Scholar 

  • Maina JN, Maloiy GMO, Warui CN, Njogu EK, Kokwaro ED (1989b) A scanning electron microscope study of the reptilian lungs: the savanna monitor lizard (Varanus exanthematicus) and the pancake tortoise (Malacochersus tornieri). Anat Rec 224:514–522

    Article  PubMed  CAS  Google Scholar 

  • Maina JN, Thomas SP, Hyde DM (1991) A morphometric study of bats of different size: correlations between structure and function of the chiropteran lung. Philos Trans R Soc Lond B Biol Sci 333B:31–50

    Google Scholar 

  • Maina JN, Wood CM, Maloiy GMO (1998) Respiratory stratagems, mechanisms and morphology of the lung of a tropical swamp worm, Alma emini (Oligochaeta: Glossoscolecidae): a transmission and scanning electron microscopic study. J Zool (London) 245:483–495

    Google Scholar 

  • Malan A (1982) Respiration and acid-base state in hibernation. In: Layman CP, Willis JS, Malan A, Wang LCH (eds) Hibernation and torpor in mammals and birds. Academic, New York, pp 237–282

    Google Scholar 

  • Malvin GM (1988) Microvascular regulation of cutaneous gas exchange in amphibians. Am Zool 28:999–1007

    Google Scholar 

  • Mangum CP (1963) Oxygen consumption in different species of polchaete worms. Comp Biochem Physiol 10:335–349

    Article  PubMed  CAS  Google Scholar 

  • Mangum CP (1985) Oxygen transport in invertebrates. Am J Physiol 248:R505–R514

    PubMed  CAS  Google Scholar 

  • Mangum CP, Lykkeboe G, Johansen K (1975a) Oxygen uptake and the role of hemoglobin in the East African swampworm Alma emini. Comp Biochem Physiol 52A:477–482

    Article  Google Scholar 

  • Manwell C (1960) Histological specifity of respiratory pigments. I. Comparisons of the coelom and muscle hemoglobins of the polychaete worm Travisia pupa and the echiuroid worm Arhynchite pugettensis. Comp Biochem Physiol 1:267–276

    Article  CAS  Google Scholar 

  • McDougall JDB, McCobe M (1967) Diffusion coefficent of oxygen through tissues. Nature (London) 215:1173–1174

    Article  Google Scholar 

  • McMahon BR (1988) Physiological responses to periodic emergency in intertidal molluscs. Am Zool 28:97–114

    Google Scholar 

  • McMahon BR, Burggren WW (1979) Respiration and adaptation to the terrestrial habitat in the land hermit crab, Coenobita clypeatus. J Exp Biol 79:265–281

    Google Scholar 

  • McMahon BR, Wilkens JL (1977) Periodic respiratory and circulatory performance in the red rock crab Cancer productus. J Exp Zool 202:363–374

    Article  Google Scholar 

  • McMahon BR, Wilkens JL (1983) Ventilation, perfusion and oxygen uptake. In: Mantel LH (ed) The physiology of crustacea, vol 5. Academic, London, pp 289–372

    Google Scholar 

  • Meban C (1980) Thicknesses of the air-blood barriers in vertebrate lungs. J Anat 131:299–307

    PubMed  CAS  Google Scholar 

  • Menon JG, Arp AJ (1992) Morphological adaptations of the respiratory hindgut of a marine echiurian worm. J Morphol 214:131–138

    Article  Google Scholar 

  • Meyer MR, Burger RE, Scheid P, Piiper J (1977) Analyses des échanges gazeux dans les poumons d’oiseaux. J Physiol Paris 73:9A

    Google Scholar 

  • Milledge JS (1985) The great oxygen secretion controversy. Lancet 2(8469–70):1408–1411

    Article  PubMed  CAS  Google Scholar 

  • Newell RC, Courtney WAM (1965) Respiratory movements in Holothuria forskali. J Exp Biol 42:45–57

    CAS  Google Scholar 

  • Nguyen-Phu D, Yamaguchi K, Scheid P, Piiper J (1986) Kinetics of oxygen uptake and release by red blood cells of the chicken. J Exp Biol 125:15–27

    PubMed  CAS  Google Scholar 

  • Nikinmaa M (1990) Vertebrate red blood cells: adaptation of function to respiratory requirements. Springer, Berlin

    Google Scholar 

  • Nilsson S (1994) The crocodilian heart and central hemodynamics. Cardioscience 5:163–166

    PubMed  CAS  Google Scholar 

  • Noble GK (1925) Integumentary, pulmonary, and cardiac modifications correlated with increased cutaneous respiration in the amphibian: a solution to the `hairy frog' problem. J Morph Physiol 40:341–416

    Article  Google Scholar 

  • Ojha J, Singh SK (1986) Scanning electron microscopy of the gills of a hill-stream fish, Danio dangila (Ham.). Arch Biol Bruxelles 97:455–467

    Google Scholar 

  • Olmeda B, Villén L, Cruz A, Orellana G, Perez-Gil J (2010) Pulmonary surfactant layers accelerate O2 diffusion through the air-water interface. Biochim Biophys Acta 1798:1281–1284

    Article  PubMed  CAS  Google Scholar 

  • Ordway GA, Garry DJ (2004) Myoglobin: an essential hemoprotein in striated muscle. J Exp Biol 207:3441–3446

    Article  PubMed  CAS  Google Scholar 

  • Packard A (1972) Cephalopods and fish: the limits of convergence. Biol Rev 47:241–307

    Article  CAS  Google Scholar 

  • Paul R, Fincke T, Linzen B (1987) Respiration in the tarantula Eurypelma californicum: evidence of diffusion lungs. J Comp Physiol B 157:209–217

    Article  Google Scholar 

  • Pavelka M, Roth J (2005) Functional ultrastructure: atlas of tissue biology and pathology. Springer, New York

    Google Scholar 

  • Perry SF (1983) Reptilian lungs: functional anatomy and evolution. Adv Anat Embryol Cell Biol 79:1–81

    PubMed  CAS  Google Scholar 

  • Perry SF, Laurent P (1990) The role of carbonic anhydrase in carbon dioxide excretion, acid base balance and ionic regulation in aquatic gill breathers. In: Truchot JP, Lahlou B (eds) Transport, respiration and excretion: comparative and environmental aspects. Karger, Basel, pp 39–67

    Google Scholar 

  • Perry SF, McDonald G (1993) Gas exchange. In: Evans DH (ed) The physiology of fishes. CRC Press, Boca Raton, FL, pp 251–278

    Google Scholar 

  • Peters HM (1978) On the mechanism of air ventilation in anabantoids (Pisces, Teleostei). Zoomorphologie 89:93–124

    Article  Google Scholar 

  • Piiper J, Scheid P (1980) Blood-gas equilibration in lungs. In: West JB (ed) Pulmonary gas exchange, vol I. Academic, New York, pp 121–171

    Google Scholar 

  • Piiper J, Gatz RN, Crawford EC (1976) Gas transport characteristics in an exclusively skin breathing salamander, Desmognathus fuscus (Plethodontidae). In: Hughes GM (ed) Respiration in amphibious vertebrates. Academic, London, pp 339–356

    Google Scholar 

  • Polimanti O (1912) Überden Beginn der Atmung bei Embryonen von Scyllium. Z Biol 57:237–272

    Google Scholar 

  • Polimanti O (1913) Sui rapporti fra peso del corpo e ritmo respiratoria di Octopus vulgaris Lam. Z Allgem Physiol 15:449–455

    Google Scholar 

  • Portier P (1933) Locomotion aérienne et respiration des lépidoptéres, un nouveau rôle physiologique des ailes et des écailles. Trav V Congr intern Ent Paris 2:25–31

    Google Scholar 

  • Powell FL, Hopkins SR (2004) Comparative physiology of lung complexity: implications for gas exchange. News Physiol Sci 19:55–60

    PubMed  Google Scholar 

  • Power JHT, Doyle IR, Davidson K, Nicholas TE (1999) Ultrastructural and protein analysis of surfactant in the Australian lungfish Neoceratodus forsteri: evidence for conservation of composition for 300 million years. J Exp Biol 202:2543–2550

    PubMed  CAS  Google Scholar 

  • Precht H (1939) Die Lungeatmung der Susswasserpulmonaten. Z Vergl Physiol 26:696–738

    Article  CAS  Google Scholar 

  • Prosser CL (1961) Oxygen: respiration and metabolism. In: Prosser CL, Brown FA (eds) Comparative animal physiology. Saunders, Philadelphia, PA, pp 198–287

    Google Scholar 

  • Prosser CL (1973) Comparative animal physiology, 3rd edn. Saunders, Philadelphia, PA

    Google Scholar 

  • Prosser CL, Brown FA (1962) Comparative animal physiology, 2nd edn. WB Saunders, London

    Google Scholar 

  • Rashevsky N (1960) Mathematical biophysics: physico-mathematical foundations of biology. Dover, New York

    Google Scholar 

  • Roughton FJW (1945) The average time spent by the blood in the human lung capillary and its relation to the rate of CO2 uptake and elimination. Am J Physiol 143:621

    CAS  Google Scholar 

  • Rozanek M, Roubik K (2008) Design of the mathematical model of the respiratory system using electron-acoustic analogy. World Acad Sci Eng Technol 47:210–213

    Google Scholar 

  • Rushner RF (1965) General characteristics of the cardiovascular system. In: Ruch TC, Patton HD (eds) Physiology and biophysics, 19th edn. Saunders, Philadelphia, PA, pp 543–549

    Google Scholar 

  • Russell CW, Evans BK (1989) Cardiovascular anatomy and physiology of the black-lip abalone, Haliotis ruber. J Exp Zool 252:105–117

    Article  Google Scholar 

  • Satchell GH (1976) The circulatory system of air-breathing fish. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic, New York, pp 105–124

    Google Scholar 

  • Satchell GH (1992) The venous system. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish physiology, vol 12. Academic, New York, pp 141–234

    Google Scholar 

  • Savage RM (1935) The ecology of young tadpoles, with special reference to some adaptations to the habitat of mass spawning in Rana temporaria L. Proc Zool Soc (London) 605–610

    Google Scholar 

  • Scheid P, Worth H, Holle JP, Meyer M (1977) Effects of oscillating and intermittent ventilatory flow on efficacy of pulmonary oxygen transfer in the duck. Respir Physiol 31:251–258

    Article  PubMed  CAS  Google Scholar 

  • Schmidt T, Carmeliet P (2010) Blood vessel formation: bridges that guide and unite. Nature (London) 465:697–699

    Article  CAS  Google Scholar 

  • Schmidt-Nielsen K (1990) Animal physiology: adaptation and environment, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Schmitz A, Gemmel M, Perry SF (2000) Morphometric partitioning of respiratory surfaces in amphioxus (Branchiostoma lanceolatum Pallas). J Exp Biol 203:3381–3390

    PubMed  CAS  Google Scholar 

  • Schottenfeld J, Song Y, Ghabrial AS (2010) Tube continued: morphogenesis of the Drosophila tracheal system. Curr Opin Cell Biol 22:633–639

    Article  PubMed  CAS  Google Scholar 

  • Shepherd SA, Thomas IM (1989) Marine invertebrates of Southern Australia. South Australian Govt Press, Adelaide

    Google Scholar 

  • Siegwart B, Gehr P, Gil J, Weibel ER (1971) Morphometric estimation of pulmonary diffusion capacity. IV. The normal dog lung. Respir Physiol 13:141–159

    Article  PubMed  CAS  Google Scholar 

  • Steen JB (1965) Comparative aspects of the respiratory gas exchange of sea urchins. Acta Physiol Scand 63:164–170

    Article  PubMed  CAS  Google Scholar 

  • Steinacker A (1975) Perfusion of the central nervous system of decapod crustaceans. Comp Biochem Physiol 52A:103–104

    Article  Google Scholar 

  • Stephenson J (1930) The oligochaeta. Clarendon Press, Oxford

    Google Scholar 

  • Swenson ER (1990) Kinetics of oxygen and carbon dioxide exchange. In: Boutilier RG (ed) Advances in comparative and environmental physiology, vol 6, Vertebrate gas exchange from environment to cell. Springer, Berlin, pp 163–210

    Google Scholar 

  • Szewczak JM, Jackson DC (1992) Apneic oxygen uptake in the torpid bat, Eptesicus fuscus. J Exp Biol 173:217–227

    PubMed  CAS  Google Scholar 

  • Taylor EW (1982) Control and co-ordination of ventilation and circulation in crustaceans: responses to hypoxia and exercise. J Exp Biol 100:289–319

    Google Scholar 

  • Taylor EW, Butler PJ (1978) Aquatic and aerial respiration in the shore crab, Carcinus maenas (L) acclimated to 15°C. J Comp Physiol 127:315–323

    Google Scholar 

  • Taylor HH, Greenaway P (1979) The structure of the gills and lungs of the arid zone crab, Holthuisana (Austrothelphusa transversa Morgens) (Sundathelphusidae: Brachyura) including observations on arterial vessels within the gills. J Zool (London) 189:359–384

    Article  Google Scholar 

  • Taylor CR, Weibel ER, Karas RH, Hoppelar H (1989) Matching structures and functions in the respiratory system: allometric and adaptive variations in energy demand. In: Wood SC (ed) Comparative pulmonary physiology: current concents. Marcel, New York, pp 27–65

    Google Scholar 

  • Tenney SM (1979) A synopsis of breathing mechanisms. In: Wood SC, Lenfant C (eds) Evolution of respiratory processes. A comparative approach. Marcel, New York, pp 51–106

    Google Scholar 

  • Thomas SP (1987) The physiology of bat flight. In: Fenton MB, Racey P, Rayner JMV (eds) Recent advances in the study of bats. Cambridge University Press, Cambridge, pp 75–99

    Google Scholar 

  • Wagner PD (1977) Diffusion and chemical reaction of pulmonary gas exchange. Physiol Rev 57:257–312

    PubMed  CAS  Google Scholar 

  • Wagner GP (1989) The origin of morphological characters and the biological basis of homology. Evolution 43:1157–1171

    Article  Google Scholar 

  • Wagner PD, Gale GE, Moon RE, Torre-Bueno JR, Stolp BW, Saltman HA (1986) Pulmonary gas exachange in humans exercising at sea level and simulated altitude. J Appl Physiol 61:260–270

    PubMed  CAS  Google Scholar 

  • Walshe BM (1948) The oxygen requirements and thermal resistance of chironomid larvae from flowing and from still waters. J Exp Biol 25:35–44

    Google Scholar 

  • Wangensteen OD (1972) Gas exchange by a bird's embryo. Respir Physiol 14:64–74

    Article  PubMed  CAS  Google Scholar 

  • Wangensteen OD, Rahn H (1970) Respiratory gas exchange by the avian embryo. Respir Physiol 11:31–45

    Article  PubMed  CAS  Google Scholar 

  • Wangensteen OD, Weibel ER (1982) Morphometric evaluation of chorioallantoic oxygen transport in the chick embryo. Respir Physiol 47:1–20

    Article  PubMed  CAS  Google Scholar 

  • Wangensteen OD, Wilson D, Rahn H (1970) Diffusion across the shell of the hen's egg. Respir Physiol 11:16–30

    Article  PubMed  CAS  Google Scholar 

  • Ward HE, Nicholas TE (1984) Alveolar type I and type II cells. Aust NZ J Med 14:731–734

    CAS  Google Scholar 

  • Weibel ER (1970/71) Morphometric estimation of pulmonary diffusion capacity. I. Model and method. Respir Physiol 11:54–75

    Google Scholar 

  • Weibel ER (1973) Morphological basis of the alveolar-capillary gas exchange. Physiol Rev 53:419–495

    PubMed  CAS  Google Scholar 

  • Weibel ER (1984) The pathway for oxygen: structure and function in the mammalian respiratory system. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Weibel ER, Taylor CR, O’Neil JJ, Leith DE, Gehr P et al (1983) Maximal oxygen consumption and pulmonary diffusing capacity: a direct comparison of physiologic and morphometric measurements in canids. Respir Physiol 54:173–188

    Article  PubMed  CAS  Google Scholar 

  • Weis-Fogh T (1967) Respiration and tracheal ventilation in locusts and other flying insects. J Exp Biol 47:561–587

    PubMed  CAS  Google Scholar 

  • Wells GP (1949) Respiratory movements of Arenicola marina L Intermittent irrigation of the tube and intermittent aerial respiration. J Mar Biol Ass UK 28:447–464

    Article  Google Scholar 

  • Wells MJ (1983) Circulation in the cephalopds. In: Saleuddin ASM, Wilbur KM (eds) The Mollusca, vol 5, Physiology, Part 2. New York, Academic Press, pp 239–290

    Google Scholar 

  • Wells MJ, Wells J (1985) Ventilation and oxygen uptake by Nautilus. J Exp Biol 118:297–312

    Google Scholar 

  • Wells MJ, O'Dor RK, Mangold K, Wells J (1983) Oxygen consumption in movement by Octopus. Mar Behav Physiol 9:289–303

    Article  Google Scholar 

  • West JB (2004) A century of pulmonary gas exchange. Am J Respir Crit Care Med 169:897–902

    Article  PubMed  Google Scholar 

  • West JB (2008) Respiratory physiology: the essentials, 8th edn. Lippincott Williams and Wilkins, Baltimore, MA

    Google Scholar 

  • Wheatly MG, Taylor EW (1979) Oxygen levels, acid-base status and heart rate during emersion of the shore crab Carcinus maenas (L) into air. J Comp Physiol 132B:305–311

    Google Scholar 

  • Whitmore CM, Warren CE, Doudoroff P (1960) Avoidance reactions of salmonid and centrachid fishes to low oxygen concentrations. Trans Am Fish Soc 89:17–26

    Article  Google Scholar 

  • Winterstein H (1925) Üeber die chemische Regulierrung der Atmung bei den Cephalopoden. Z Vergl Physiol 2:315–328

    Article  CAS  Google Scholar 

  • Wittenberg JB, Wittenberg BA (1989) Transport of oxygen in muscle. Annu Rev Physiol 51:857–878

    Article  PubMed  CAS  Google Scholar 

  • Wittenberg JB, Wittenberg BA (2003) Myoglobin function assessed. J Exp Biol 206:2011–2030

    Article  PubMed  CAS  Google Scholar 

  • Wood CM, Randall DJ (1973) The influence of swimming activity on sodium balance in the rainbow trout (Salmo gairdneri). J Comp Physiol 82:207–233

    Article  Google Scholar 

  • Yonge CM (1947) The pallial organs in the aspidobranch Gastropoda and their evolution throughout the Mollusca. Phil Trans R Soc Lond B Biol Sci 232:443–518

    Article  CAS  Google Scholar 

  • Young RE, Coyer PE (1979) Phase co-ordination in the cardiac and ventilatory rhythms of the lobster Momarus americanus. J Exp Biol 62:53–74

    Google Scholar 

  • Zinkler D (1966) Comparative metabolism of invertebrates. Z Vergl Physiol 52:99–144

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John N. Maina .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maina, J.N. (2011). Fundamental Principles of Gas Exchangers. In: Bioengineering Aspects in the Design of Gas Exchangers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20395-4_2

Download citation

Publish with us

Policies and ethics