Skip to main content

An Evolutionary Approach for Protein Contact Map Prediction

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6623))

Abstract

In this study, we present a residue-residue contact prediction approach based on evolutionary computation. Some amino acid properties are employed according to their importance in the folding process: hydrophobicity, polarity, charge and residue size. Our evolutionary algorithm provides a set of rules which determine different cases where two amino acids are in contact. A rule represents two windows of three amino acids. Each amino acid is characterized by these four properties. We also include a statistical study for the propensities of contacts between each pair of amino acids, according to their types, hydrophobicity and polarity. Different experiments were also performed to determine the best selection of properties for the structure prediction among the cited properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fariselli, P., Olmea, O., Valencia, A., Casadio, R.: Prediction of contact map with neural networks and correlated mutations. Protein Engineering 14, 133–154 (2001)

    Google Scholar 

  2. Tegge, A., Wang, Z., Eickholt, J., Cheng, J.: Nncon: Improved protein contact map prediction using 2d-recursive neural networks. Nucleic Acids Research 37(2), 515–518 (2009)

    Article  Google Scholar 

  3. Cheng, J., Baldi, P.: Improved residue contact prediction using support vector machines and a large feature set. Bioinformatics 8, 113 (2007)

    Google Scholar 

  4. Gupta, N., Mangal, N., Biswas, S.: Evolution and similarity evaluation of protein structures in contact map space. Proteins: Structure, Function, and Bioinformatics 59, 196–204 (2005)

    Article  Google Scholar 

  5. Zhang, Y.: I-tasser: fully automated protein structure prediction in casp8. Proteins: Structure, Function, and Bioinformatics 77, 100–113 (2009)

    Article  Google Scholar 

  6. Casp8 competition official web, http://predictioncenter.org/casp8

  7. Cui, Y., Chen, R.S., Hung, W.: Protein folding simulation with genetic algorithm and supersecondary structure constraints. Proteins: Structure, Function and Genetics 31, 247–257 (1998)

    Article  Google Scholar 

  8. Unger, R., Moult, J.: Genetic algorithms for protein folding simulations. Biochim. Biophys. 231, 75–81 (1993)

    Google Scholar 

  9. Zhang, G., Han, K.: Hepatitis c virus contact map prediction based on binary strategy. Comp. Biol. and Chem. 31, 233–238 (2007)

    Article  MATH  Google Scholar 

  10. Protein data bank web, http://www.pdb.org

  11. Russell, R.B., Betts, M.J., Barnes, M.R.: Amino acid properties and consequences of subsitutions. Bioinformatics for Geneticists. Wiley, Chichester (2003)

    Google Scholar 

  12. Gu, J., Bourne, P.E.: Structural Bioinformatics (Methods of Biochemical Analysis). Wiley-Blackwell, Chichester (2003)

    Google Scholar 

  13. Protein data bank advanced search, http://www.pdb.org/pdb/search/advSearch.do

  14. Complete list of 12,830 pdb protein identifiers used in this article, http://www.upo.es/eps/marquez/proteins.txt

  15. Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. J. Mol. Bio. 157, 105–132 (1982)

    Article  Google Scholar 

  16. Grantham, R.: Amino acid difference formula to help explain protein evolution. J. J. Mol. Bio. 185, 862–864 (1974)

    Google Scholar 

  17. Klein, P., Kanehisa, M., DeLisi, C.: Prediction of protein function from sequence properties: Discriminant analysis of a data base. Biochim. Biophys. 787, 221–226 (1984)

    Article  Google Scholar 

  18. Dawson, D.M.: The Biochemical Genetics of Man. In: Brock, D.J.H., Mayo, O. (eds.) (1972)

    Google Scholar 

  19. Zhang, G.Z., Huang, D.S., Quan, Z.H.: Combining a binary input encoding scheme with rbfnn for globulin protein inter-residue contact map prediction. Pattern Recognition Letters 16(10), 1543–1553 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Márquez Chamorro, A.E., Divina, F., Aguilar-Ruiz, J.S., Asencio Cortés, G. (2011). An Evolutionary Approach for Protein Contact Map Prediction. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2011. Lecture Notes in Computer Science, vol 6623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20389-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20389-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20388-6

  • Online ISBN: 978-3-642-20389-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics