Advertisement

Fractional Modeling Method of Cognition Process in Teaching Evaluation

  • Chunna Zhao
  • Minhua Wu
  • Yu Zhao
  • Liming Luo
  • Yingshun Li
Conference paper
  • 1.6k Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 143)

Abstract

Cognition process has been translated into other quantitative indicators in some assessment decision systems. In teaching evaluation system a fractional cognition process model is proposed in this paper. The fractional model is built on fractional calculus theory combining with classroom teaching features. The fractional coefficient is determined by the actual course information. Student self-parameter is decided by the actual situation potential of each individual student. The detailed descriptions are displayed through building block diagram. The objective quantitative description can be given in the fractional cognition process model. And the teaching quality assessments will be more objective and accurate based on the above quantitative description.

Keywords

fractional cognition process qualitative indicators quantification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhao, C., Zhao, Y., Tan, X., Li, Y., Luo, L.: Course Evaluation Method Based on Analytic Hierarchy Process. In: IEEE CCCM, pp. 318–321 (2010)Google Scholar
  2. 2.
    Zhao, C., Li, Y., Luo, L.: Application of gray relational analysis for course evaluation. In: IEEE ICICTA, pp. 758–761 (2010)Google Scholar
  3. 3.
    Xue, D.-Y., Zhao, C.-N., Pan, F.: Simulation model method and application of fractional order nonlinear system. Journal of System Simulation, 2405–2408 (2006)Google Scholar
  4. 4.
    Zhao, C.-N., Zhang, X.-D., Sun, Y.-R.: Simulation of commensurate fractional order systems. Journal of System Simulation, 3948–3950 (2008)Google Scholar
  5. 5.
    Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I 47, 25–39 (2000)CrossRefGoogle Scholar
  6. 6.
    Zhao, C.-N., Pan, F., Xue, D.-Y.: H∞ controller design for fractional order system. Journal of Northeastern University 27, 1189–1192 (2006)zbMATHGoogle Scholar
  7. 7.
    Xue, D.-Y., Zhao, C.-N.: Fractional order PID controller design for fractional order system. Control Theory and Applications 24, 771–776 (2007)zbMATHGoogle Scholar
  8. 8.
    Zhao, C., Zhang, X.: The application of fractional order PID controller to position servomechanism. In: IEEE WCICA, pp. 3380–3383 (2008)Google Scholar
  9. 9.
    Xue, D., Zhao, C., Chen, Y.: Fractional Order PID Control of A DC-Motor with Elastic Shaft: A Case Study. In: American Control Conference, pp. 3182–3187 (2006)Google Scholar
  10. 10.
    Olofsson, P., Eklundh, L.: Estimation of absorbed PAR across Scandinavia from satellite measurements. Part II: Modeling and evaluating the fractional absorption. Remote Sensing of Environment 110, 240–251 (2007)Google Scholar
  11. 11.
    Hapca, S., Crawford, J.W., MacMillan, K., et al.: Modelling nematode movement using time-fractional dynamics. Journal of Theoretical Biology 248, 212–224 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ahmad, W.M., El-Khazali, R.: Fractional-order dynamical models of love. Chaos, Solitons & Fractals 33, 1367–1375 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Walker, R.J., McDonough, W.F., Honesto, J., et al.: Modeling fractional crystallization of group IVB iron meteorites. Geochimica et Cosmochimica Acta 72, 2198–2216 (2008)CrossRefGoogle Scholar
  14. 14.
    Caporale, G.M., Gil-Alana, L.A.: Modelling the US, UK and Japanese unemployment rates: Fractional integration and structural breaks. Computational Statistics & Data Analysis 52, 4998–5013 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Zhao, C., Zhao, Y., Liu, Y., Li, Y., Luo, L.: Fractional Personnel Losing Modeling Approach and Application. In: IEEE CISE, pp. 1–4 (2009)Google Scholar
  16. 16.
    Xue, D., Zhao, C., Chen, Y.: A Modified Approximation Method of Fractional Order System. In: IEEE ICMA, pp. 1043–1048 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chunna Zhao
    • 1
  • Minhua Wu
    • 1
  • Yu Zhao
    • 2
  • Liming Luo
    • 1
  • Yingshun Li
    • 3
  1. 1.Information Engineering CollegeCapital Normal UniversityBeijingChina
  2. 2.Yunnan Technician CollegeKunmingChina
  3. 3.Engineering CollegeShenyang University of TechnologyLiaoyangChina

Personalised recommendations