A GA-PLS Method for the Index Tracking Problem

  • Zhe Chen
  • Shizhu Liu
  • Jiangang Shen
  • Shenghong Li
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 143)


Index tracking is a popular problem for funds, especially for index tracker funds. In this paper, we introduced GA-PLS method to solve the index tracking problem. This method consists of genetic algorithm (GA) and partial least squares (PLS). For a portfolio constructed by specified stocks, we used PLS regression to determine their weights in this portfolio. And we used GA to determine which stocks should be chosen to optimize the tracking effect of the portfolio. Results showed that the tracking portfolio constructed by GA-PLS has good performances on both in-sample and out-of-sample data.


Index tracking Genetic algorithm Partial least squares 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beasley, J.E., Meade, N., Chang, T.-J.: An evolutionary heuristic for the index tracking problem. European Journal of Operational Research 148, 621–643 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Oh, K.J., Kim, T.Y., Min, S.: Using genetic algorithm to support portfolio optimiation for index fund management. Expert Systems with Applications 28, 371–379 (2005)CrossRefGoogle Scholar
  3. 3.
    Abdi, H.: Partial Least Squares (PLS) Regression (unpublished)Google Scholar
  4. 4.
    Leardi, R., Boggia, R., Terrile, M.: Genetic algorithms as a strategy for feature selection. J. Chemometr. 6, 267–281 (1992)CrossRefGoogle Scholar
  5. 5.
    Hasegawa, K., Funatsu, K.: GA strategy for variable selection in QSAR studies: GAPLS and D-optimal designs for predictive QSAR model. Journal of Molecular Structure (Theochem) 425, 255–262 (1998)CrossRefGoogle Scholar
  6. 6.
    Leardi, R., Gonzalez, A.L.: Genetic algorithms applied to feature selection in PLS regression: how and when to use them. Chemometrics and Intelligent Laboratory Systems 41, 195–207 (1998)CrossRefGoogle Scholar
  7. 7.
    Canakgoz, N.A., Beasley, J.E.: Mixed-integer programming approaches for index tracking and enhanced indexation. European Journal of Operational Research 196, 384–399 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Riahi, S., Ganjali, M.R., Norouzi, P., Jafari, F.: Application of GA-MLR, GA-PLS and the DFT quantum mechanical (QM) calculations for the prediction of the selectivity coefficients of a histamine-selective electrode. Sensors and Actuators B 132, 13–19 (2008)CrossRefGoogle Scholar
  9. 9.
    Mevik, B.-H., Wehrens, R.: The pls package: Principal component and partial least squares regression in R. Journal of Statistical Software 18(2) (January 2007)Google Scholar
  10. 10.
    Dose, C., Cincotti, S.: Clustering of financial time series with application to index and enhanced index tracking portfolio. Physica A 355, 145–151 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Corielli, F., Marcellino, M.: Factor based index tracking. Journal of Banking and Finance 30, 2215–2233 (2006)CrossRefGoogle Scholar
  12. 12.
    Colwell, D., El-Hassan, N., Kwon, O.K.: Hedging diffusion processes by local risk minimization with applications to index tracking. Journal of Economic Dynamics & Control 31, 2135–2151 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Zhe Chen
    • 1
  • Shizhu Liu
    • 2
  • Jiangang Shen
    • 1
  • Shenghong Li
    • 1
  1. 1.Deparment of MathematicsZhejiang UniversityHangzhouChina
  2. 2.Deparment of EconomicsZhejiang UniversityHangzhouChina

Personalised recommendations