Skip to main content

Isotropic Turbulence and Spectra

  • Chapter
  • First Online:
  • 1040 Accesses

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 10))

Abstract

The knowledge gained from similarity theory is applied in many fields of natural and engineering science, among others, in fluid mechanics. In this field, similarity considerations are often used for providing insight into the flow phenomenon and for generalization of results. The importance of similarity theory rests on the recognition that it is possible to gain important new insights into flows from the similarity of conditions and processes without having to seek direct solutions for posed problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Bernand, J.M. Wallace, Turbulent Flow (Wiley, Hoboken, NJ, 2002)

    Google Scholar 

  2. T. Cebeci, Analysis of Turbulent Flows (Elsevier, Amsterdam, 2004)

    Google Scholar 

  3. P.A. Davidson, Turbulence. An Introduction for Scientists and Engineers (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  4. A. Tsinober, An Informal Introduction to Turbulence (Kluwer Academic Publishers, Amsterdam, 2004)

    Google Scholar 

  5. G.I. Barenblatt, Scaling Phenomena in Fluid Mechanics (Cambridge University Press, Cambridge, 1994)

    MATH  Google Scholar 

  6. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1973)

    Google Scholar 

  7. O. Darrigol, Words of Flow: A History of Hydrodynamics from the Bernoullis to Prandtl (Oxford University Press, New York, 2009)

    Google Scholar 

  8. L. Prandtl, O.G. Tietjens, Applied Hydro- and Aeromechanics (McGraw-Hill, London, 1953)

    Google Scholar 

  9. M. Samimy et al., A Gallery of Fluid Motion (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  10. P. Taberling, O. Cardoso, Turbulence. A Tentative Dictionary (Plenum, New York, 1994)

    Google Scholar 

  11. D.P. Papailiou, P.S. Lyykoudis, J. Fluid Mech. 62, 11–31 (1974)

    Article  ADS  MATH  Google Scholar 

  12. N. Kolmogorov, Dokl. Akad Nauk SSSR 30, 299 (1941)

    ADS  Google Scholar 

  13. A.M.C.R. Obukhov, Acad. Sci. U.R.S.S 32, 19 (1941)

    Google Scholar 

  14. S.G. Saddoughi, S.V. Veeravally, J. Fluid Mech. 268, 333–372 (1994)

    Article  ADS  Google Scholar 

  15. A.M. Yaglom, Dokl. Akad Nauk SSSR 67, 795 (1949)

    MathSciNet  MATH  Google Scholar 

  16. A. La Porta et al., Fluid particle accelerations in fully developed turbulence. Lett. Nat. 409, 1017 (2001)

    Article  Google Scholar 

  17. O.G. Bakunin, Plasma Phys. Control. Nucl. Fusion 45, 1909 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg G. Bakunin .

Further Reading

Further Reading

1.1 Hydrodynamics and Scaling

  • G.I. Barenblatt, Scaling Phenomena in Fluid Mechanics (Cambridge University Press, Cambridge, 1994)

  • G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1973)

  • O. Darrigol, Words of Flow: A History of Hydrodynamics from the Bernoullis to Prandtl (Oxford University Press, New York, 2009)

  • C.R. Doering, J.D. Gibbon, Applied Analysis of the Navier–Stokes Equations (Cambridge University Press, Cambridge, 1995)

  • G.S. Golitsyn, Selected Papers (Moscow, Nauka, 2008)

  • J. Katz, Introductory Fluid Mechanics (Cambridge University Press, Cambridge, 2010)

  • J.-L. Lagrange, Mecanique Analytique (Cambridge University Press, Cambridge, 2009)

  • A.J. Majda, A.L. Bertozzi, Vorticity and Incompressible Flow (Cambridge University Press, Cambridge, 2002)

  • P. Mueller, The Equations of Oceanic Motions (Cambridge University Press, Cambridge, 2006)

  • L. Prandtl, O.G. Tietjens, Applied Hydro- and Aeromechanics (McGraw Hill, London, 1953)

  • M. Samimy et al., A Gallery of Fluid Motion (Cambridge University Press, Cambridge, 2003)

  • P. Taberling, O. Cardoso, Turbulence A Tentative Dictionary (Plenum, New York, 1994)

  • M. Van-Dyke, An Album of Fluid Motion (Parabolic, Stanford, CA, 1982)

1.2 Turbulence

  • G.K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, Cambridge, 1959)

  • P.A. Davidson, Turbulence, An Introduction for Scientists and Engineers (Oxford University Press, Oxford, 2004)

  • U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995)

  • J.R. Herring, J.C. McWilliams, Lecture Notes on Turbulence (World Scientific, Singapore, 1987)

  • M. Lesieur, Turbulence in Fluids (Springer, Berlin, 2008)

  • D.C. Leslie, Developments in the Theory of Turbulence (Clarendon, Oxford, 1973)

  • W.D. McComb, The Physics of Fluid Turbulence (Clarendon Press, Oxford, 1994)

  • A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics (MIT, Cambridge, 1975)

  • K.R. Sreenivasan, Rev. Mod. Phys. 71, S 383 (1999)

1.3 Statistical Aspects of Turbulence

  • S. Heinz, Statistical Mechanics of Turbulent Flows (Springer, Berlin, 2003)

  • M. Lesieur et al. (eds.), New Trends in Turbulence (Springer, Berlin, 2001)

  • J.L. Lumley (ed.), Fluid Mechanics and the Environment. Dynamical Approaches (Springer, Berlin, 2001)

  • M. Oberlack, F.H. Busse (eds.), Theories of Turbulence (Springer, New York, 2002)

  • J. Peinke, A. Kittel, S. Barth, M. Oberlack (eds.), Progress in Turbulence (Springer, Berlin, 2005)

  • S.B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000)

  • Y. Zhou, Phys. Rep. 488, 1 (2010)

1.4 Simulation of Turbulent Flows

  • P.S. Bernard, J.M. Wallace, Turbulent Flow. Analysis, Measurement, and Prediction (Wiley, New York, 2002)

  • H.A. Dijkstra, Nonlinear Physical Oceanology (Springer, Berlin, 2006)

  • P. Durbin, B. Pettersson-Reif, Statistical Theory and Modeling for Turbulent Flows (Wiley, New York, 2010)

  • J. Hoffman, C. Johnson, Computational Turbulent Incompressible Flow (Springer, Berlin, 2007)

  • M.Z. Jacobson, Fundamentals of Atmospheric Modeling (Cambridge University Press, Cambridge, 2005)

  • P. Lynch, The Emergence of Numerical Weather Prediction (Cambridge University Press, Cambridge, 2006)

  • R. Schiestel, Modeling and Simulation of Turbulent Flows (Wiley, New York, 2008)

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bakunin, O.G. (2011). Isotropic Turbulence and Spectra. In: Chaotic Flows. Springer Series in Synergetics, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20350-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20350-3_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20349-7

  • Online ISBN: 978-3-642-20350-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics