Skip to main content

Fractional Models of Anomalous Transport

  • Chapter
  • First Online:
  • 1036 Accesses

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 10))

Abstract

In the framework of the probabilistic approach to transport in random flows, the probability density \( \rho (\vec{r},t) \) plays a central role. This is the probability to find a random walker at time \( t \) at distance \( r \) from its starting point. In a random system, \( \rho (\vec{r},t) \) contains information on both static disorder and the dynamical process. In homogenous systems, the probability density is Gaussian and does not depend on the configuration considered

$$ \rho (\vec{r},t) = \frac{{\delta {r^d}}}{{{{(4\pi {D_0}t)}^{d/2}}}}\exp \left( { - \frac{{{r^2}}}{{4{D_0}t}}} \right). $$
(11.1.1)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G.H. Weiss, Aspects and Applications of the Random Walk (Elsevier, Amsterdam, 1994)

    MATH  Google Scholar 

  2. E.W. Montroll and M. F. Shlesinger On the Wonderful World of Random Walks, in Studies in Statistical Mechanics, vol 11, (Elsevier Science Publishers, Amsterdam 1984), p. 1

    Google Scholar 

  3. A. Pekalski, K. Sznajd-Weron (eds.), Anomalous Diffusion. From Basics to Applications (Springer, Berlin, 1999)

    MATH  Google Scholar 

  4. M.F. Shiesinger, G.M. Zaslavsky, Levy Flights and Related Topics in Physics (Springer, Berlin, 1995)

    Book  Google Scholar 

  5. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. P.B. Rhines, J. Fluid Mech. 69(Part 3), 417–443 (1975)

    Article  ADS  MATH  Google Scholar 

  7. O.G. Bakunin, T. Schep, J. Phys. Lett. A 322, 105 (2004)

    Article  ADS  MATH  Google Scholar 

  8. E. Montroll, G. Weiss, J. Math. Phys. 6, 178 (1965)

    Article  MathSciNet  Google Scholar 

  9. E. Montroll, H. Scher, Phys. Rev. Ser. B 12, 2455 (1972)

    Google Scholar 

  10. Lubashevskiy I.A. and Zemlianov, JETF, 114, 1284 1998

    Google Scholar 

  11. A. Einstein, Ann. Physik 17, 549 (1905)

    Article  ADS  Google Scholar 

  12. AYa Khintchine, P. Levy, Compt. Rend. 202, 274 (1936)

    Google Scholar 

  13. A. Cauchy, Comptes Rends 37, 292 (1853)

    Google Scholar 

  14. A. Leonard, I. Mizic, Phys. Fluid. (1994)

    Google Scholar 

  15. B. Kuvshinov, T. Schep, Phys. Rev. Lett. 215, 3675 (1998)

    Google Scholar 

  16. G.M. Zaslavsky, Chaos 4, 253 (1994)

    Article  Google Scholar 

  17. A.V. Chechkin, V.Y. Gonchar, J. Exp. Theor. Phys. 91, 635 (2000)

    Article  ADS  Google Scholar 

  18. O.G. Bakunin, Plasma Phys. Rep. 16, 529 (1990)

    Google Scholar 

  19. S.D. Danilov, V.A. Dovgenko, I.G. Yakushkin, J. Exp. Theor. Phys. 91, 423–432 (2000)

    Article  ADS  Google Scholar 

  20. K. Diethelm, The Analysis of Fractional Differential Equations. An Application-Oriented Exposition (Springer, Berlin, 2010)

    MATH  Google Scholar 

  21. L. Pietronero, Fractals’ Physical Origin and Properties (Plenum, New York, 1988)

    Google Scholar 

  22. B.J. West, M. Bologna, P. Grigolini, Physics o Fractal Operators (Springer, New York, 2003)

    Google Scholar 

  23. G. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics (Oxford University Press, Oxford, 2005)

    MATH  Google Scholar 

  24. O.G. Bakunin, Physica A 337, 27–35 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg G. Bakunin .

Further Reading

Further Reading

1.1 Levy Flights

  • R. Balescu, Statistical Dynamics (Imperial College, London, 1997)

  • R. Botet, M. Poszajczak, Universal Fluctuations (World Scientific, Singapore, 2002)

  • G.P. Bouchaud, A. Georges, Physics Reports 195(132–292), 1990 (1990)

  • J. Bricmont et al., Probabilities in Physics (Springer, Berlin, 2001)

  • R. Klages, G. Radons, I. Sokolov (eds.), Anomalous Transport, Foundations and Applications. (Wiley, New York, 2008)

  • A. Pekalski, K. Sznajd-Weron (eds.), Anomalous Diffusion. From Basics to Applications (Springer, Berlin, 1999)

  • M.F. Shiesinger, G.M. Zaslavsky, Levy Flights and Related Topics in Physics (Springer, Berlin, 1995)

  • G.M. Zaslavsky, Physics Reports 371, 461–580 (2002)

  • Ya.B. Zeldovich, A.A. Ruzmaikin, D.D. Sokoloff, The Almighty Chance (World Scientific, Singapore, 1990)

1.2 Continuous Time Random Walk and Scaling

  • D. Ben-Avraham, S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge University Press, Cambridge, 1996)

  • J.W. Haus, K.W. Kehr, Phys. Rep. 150, 263 (1987)

  • R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)

  • E.W. Montroll, M.F. Shlesinger, On the Wonderful World of Random Walks. Studies in Statistical mechanics, vol. 11 (Elsevier, Amsterdam, 1984), p. 1

  • E.W. Montroll, B.J. West, On an Enriches Collection of Stochastic Processes, in Fluctuation Phenomena, ed. by E.W. Montroll, J.L. Lebowitz (Elsevier, Amsterdam, 1979)

  • V.V. Uchaikin, V.M. Zolotarev, Chance and Stability Stable Distributions and Their Applications (VSP, Utrecht, 1999)

1.3 Fractal Operators

  • K. Diethelm, The Analysis of Fractional Differential Equations. An Application-Oriented Exposition (Springer, Berlin, 2010)

  • L. Pietronero, Fractals' Physical Origin and Properties (Plenum, New York, 1988)

  • D. Sornette, Critical Phenomena in Natural Sciences (Springer, Berlin, 2006)

  • B.J. West, M. Bologna, P. Grigolini, Physics of Fractal Operators (Springer, New York, 2003)

  • G. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics (Oxford University Press, Oxford, 2005)

1.4 Vortex Structures and Trapping

  • A. Crisanti, M. Falcioni, A. Vulpiani, Rivista Del Nuovo Cimento 14, 1–80 (1991)

  • E. Guyon, J.-P. Nadal, Y. Pomeau (eds.), Disorder and Mixing (Kluwer, Dordrecht, 1988)

  • P.J. Holmes, J.L. Lumley, G. Berkooz, J.C. Mattingly, R.W. Wittenberg, Physics Reports 287, 337–384 (1997)

  • A. Maurel, P. Petitjeans (eds.), Vortex Structure and Dynamics Workshop (Springer, Berlin, 2000)

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bakunin, O.G. (2011). Fractional Models of Anomalous Transport. In: Chaotic Flows. Springer Series in Synergetics, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20350-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20350-3_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20349-7

  • Online ISBN: 978-3-642-20350-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics