Skip to main content

Global Topographically Corrected and Topo-Density Contrast Stripped Gravity Field from EGM08 and CRUST 2.0

  • Conference paper
  • First Online:
Geodesy for Planet Earth

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 136))

  • 1853 Accesses

Abstract

We compute globally the topographically corrected and topo-density contrast stripped gravity disturbances and gravity anomalies taking into account the major known density variations within the topography. The topographical and topo-density contrast stripping corrections are applied to the EGM08 gravity field quantities in two successive steps. First, the gravitational contribution of the topography of constant average density 2,670 kg/m3 is subtracted. Then the ice, sediment, and upper crust topo-density contrast stripping corrections are applied to the topographically corrected gravity field quantities in order to model the gravitational contribution due to anomalous density variations within the topography. The coefficients of the global geopotential model EGM08 complete to degree 180 of spherical harmonics are used to compute the gravity disturbances and gravity anomalies. The 5 × 5 arc-min global elevation data from the ETOPO5 are used to generate the global elevation coefficients. These coefficients are utilized to compute the topographical correction with a spectral resolution complete to degree and order 180. The 2 × 2 arc-deg global data of the ice, sediment, and upper crust from the CRUST 2.0 global crustal model are used to compute the ice, sediment, and upper crust topo-density contrast stripping corrections with a 2 × 2 arc-deg spatial resolution. All data are evaluated globally on a 1 × 1 arc-deg grid at the Earth’s surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. EOS. Trans AGU 81:F897

    Google Scholar 

  • Heck B (2003) On Helmert’s methods of condensation. J Geod 77(3–4):155–170

    Article  Google Scholar 

  • Heiskanen WH, Moritz H (1967) Physical geodesy. W.H., Freeman and Co, San Francisco

    Book  Google Scholar 

  • Hinze WJ (2003) Bouguer reduction density, why 2.67? Geophysics 68(5):1559–1560

    Article  Google Scholar 

  • Huang J, Vaníček P, Pagiatakis SD, Brink W (2001) Effect of topographical density on the geoid in the Canadian Rocky Mountains. J Geod 74:805–815

    Article  Google Scholar 

  • Hunegnaw A (2001) The effect of lateral density variation on local geoid determination. Bollettino di geodesia e scienze affini 60(2):125–144

    Google Scholar 

  • Kühtreiber N (1998) Precise geoid determination using a density variation model. Phys Chem Earth 23(1):59–63

    Article  Google Scholar 

  • Martinec Z (1998) Boundary-value problems for gravimetric determination of a precise geoid. Springer, Berlin

    Google Scholar 

  • Martinec Z, Vaníček P, Mainville A, Veronneau M (1995) The effect of lake water on geoidal height. Manusc Geod 20:193–203

    Google Scholar 

  • Novák P (2010) High resolution constituents of the Earth gravitational field. Surv Geoph, 31(1), pp. 1–21, doi:10.1007/s10712-009-9077-z

  • Novák P, Grafarend EW (2005) The ellipsoidal representation of the topographical potential and its vertical gradient. J Geod 78(11–12):691–706

    Article  Google Scholar 

  • Novák P, Grafarend EW (2006) The effect of topographical and atmospheric masses on spaceborne gravimetric and gradiometric data. Stud Geoph Geod 50(4):549–582

    Article  Google Scholar 

  • Novák P, Vaníček P, Martinec Z, Veronneau M (2001) Effects of the spherical terrain on gravity and the geoid. J Geod 75(9–10):491–504

    Google Scholar 

  • Sjöberg LE (2004) The effect on the geoid of lateral topographic density variations. J Geod 78(1–2):34–39

    Google Scholar 

  • Tenzer R, Vaníček P, Novák P (2003) Far-zone contributions to topographical effects in the Stokes-Helmert method of the geoid determination. Stud Geoph Geod 47(3):467–480

    Article  Google Scholar 

  • Vaníček P, Najafi M, Martinec Z, Harrie L, Sjöberg LE (1995) Higher-degree reference field in the generalised Stokes-Helmert scheme for geoid computation. J Geod 70:176–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Tenzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tenzer, R., Hamayun, Vajda, P. (2012). Global Topographically Corrected and Topo-Density Contrast Stripped Gravity Field from EGM08 and CRUST 2.0. In: Kenyon, S., Pacino, M., Marti, U. (eds) Geodesy for Planet Earth. International Association of Geodesy Symposia, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20338-1_47

Download citation

Publish with us

Policies and ethics