Skip to main content

Local Hydrological Information in Gravity Time Series: Application and Reduction

  • Conference paper
  • First Online:
Book cover Geodesy for Planet Earth

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 136))

  • 1895 Accesses

Abstract

Hydrological variations of up to some 10 nm/s2 are significant and broadband signals in temporal gravity observations. On the one hand they need to be eliminated from the data as they interfere with geodynamic signals. On the other hand they can be used to improve the understanding of hydrological process dynamics and to evaluate distributed hydrological models. Compared to satellite observations which are affected by global and regional hydrological variations continuous recordings from superconducting gravimeters (SGs) additionally may contain extractable information on local changes. To compare terrestrial data to satellite observations and to regional/global hydrological models, a local hydrological impact on the observations must be quantified and appropriately reduced first.

To investigate the local hydrological impact on gravity of the hilly and geologically heterogeneous surroundings of the SG at the Geodynamic Observatory Moxa, Germany, interdisciplinary research has been carried out. For an area of about 1.5 × 1.5 km2 a hydrological catchment model was combined with a gravimetric 3D model, including heterogeneities of the subsoil and topography in detail. A reduction of the local hydrological signal in the SG recordings was developed. About 30% of the local hydrological effect in the SG data originate from an area within a radius of 90 m around the observatory. The contribution of areas above the SG level is about 85% of the total local effect. After the local hydrological signal is separated, the SG data become suitable to be interpreted with regard to changes in continental water storage as found in GRACE satellite observations and in global hydrological models. The evaluation of the local hydrological model basing on the gravimetric modelling and the SG data highlights approaches for further enhancement of the internal hydrological process representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Takemoto S, Fukuda Y, Higashi T, Imanishi Y, Iwano S, Ogasawara S, Kobayashi Y, Takiguchi H, Dwipa S, Kusuma DS (2006) Hydrological effects on the superconducting gravimeter observation in Bandung. J Geodyn 41(1–3):288–295. doi:10.1016/j.jog.2005.08.030

    Article  Google Scholar 

  • Boy J-P, Hinderer J (2006) Study of the seasonal gravity signal in superconducting gravimeter data. J Geodyn 41(1–3):227–233. doi:10.1016/j.jog.2005.08.035

    Article  Google Scholar 

  • Creutzfeldt B, Güntner A, Klügel T, Wziontek H (2008) Simulating the influence of water storage changes on the superconducting gravimeter of the Geodetic Observatory Wettzell, Germany. Geophysics 73(6):WA95–WA104. doi:10.1190/1.2992508

    Article  Google Scholar 

  • Götze H-J, Lahmeyer B (1988) Application of three-dimensional interactive modelling in gravity and magnetics. Geophysics 53(8):1096–1108. doi:10.1190/1.1442546

    Article  Google Scholar 

  • Harnisch G, Harnisch M (2006) Hydrological influences in long gravimetric data series. J Geodyn 41(1–3):276–287. doi:10.1016/j.jog.2005.08.018

    Article  Google Scholar 

  • Hokkanen T, Korhonen K, Virtanen H, Laine EL (2007) Effects of the fracture water of bedrock on superconducting gravimeter data. Near Surf Geophys 5(2):133–140

    Google Scholar 

  • Imanishi Y, Kokubo K, Tatehata H (2006) Effect of underground water on gravity observation at Matsushiro, Japan. J Geodyn 41:221–226. doi:10.1016/j.jog.2005.08.031

    Article  Google Scholar 

  • Krause P, Naujoks M, Fink M, Kroner C (2009) The impact of soil moisture changes on gravity residuals obtained with a superconducting gravimeter. J Hydrol 373(1–2):151–163. doi:10.1016/j.jhydrol.2009.04.019

    Article  Google Scholar 

  • Kroner C (2001) Hydrological effects on gravity data of the Geodynamic Observatory Moxa. J Geod Soc Jpn 47(1):353–358

    Google Scholar 

  • Kroner C, Jahr T (2006) Hydrological experiments around the superconducting gravimeter at Moxa Observatory. J Geodyn 41(1–3):268–275. doi:10.1016/j.jog.2005.08.012

    Article  Google Scholar 

  • Kroner C, Jahr T, Jentzsch G (2004) Results of 44 months of observations with a superconducting gravimeter at Moxa/Germany. J Geodyn 38(3–5):263–280. doi:10.1016/j.jog.2004.07.012

    Article  Google Scholar 

  • Kroner C, Jahr T, Naujoks M, Weise A (2007) Hydrological signals in gravity – foe or friend? vol 130, IAG symposia series. Springer, Berlin, pp 504–510

    Google Scholar 

  • Llubes M, Florsch N, Hinderer J, Longuevergne L, Amalvict M (2004) Local hydrology, the Global Geodynamics Project and CHAMP/GRACE perspective: some case studies. J Geodyn 38(3–5):355–374. doi:10.1016/j.jog.2004.07.015

    Article  Google Scholar 

  • Mäkinen J, Tattari S (1988) Soil moisture and groundwater: two sources of gravity variations. Bull Inf Marées Terr 63:103–110

    Google Scholar 

  • Meurers B, Van Camp M, Petermans T (2007) Correcting superconducting gravity time-series using rainfall modelling at the Vienna and Membach station and application to Earth tide analysis. J Geod 81(11):703–712. doi:10.1007/s00190-007-0137-1

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I – a discussion of principles, J Hydrology 10(3):282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Naujoks M (2008) Hydrological information in gravity: observation and modelling. PhD thesis, Institute of Geosciences, Friedrich-Schiller-University Jena. http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-16661/Naujoks/Dissertation.pdf, Access date 25 August 2011

  • Naujoks M, Weise A, Kroner C, Jahr T (2008) Detection of small hydrological variations in gravity by repeated observations with relative gravimeters. J Geod 82:543–553. doi:10.1007/s00190-007- 0202-9

    Article  Google Scholar 

  • Naujoks M, Kroner C, Weise A, Jahr T, Krause P, Eisner S (2010) Evaluating local hydrological modelling by temporal gravity observations and a gravimetric three-dimensional model. Geophys J Int. 182:233–249

    Google Scholar 

  • Neumeyer J, Barthelmes F, Dierks O, Flechtner F, Harnisch M, Harnisch G, Hinderer J, Imanishi Y, Kroner C, Meurers B, Petrovic S, Reigber C, Schmidt R, Schwintzer P, Sun H-P, Virtanen H (2006) Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models. J Geod 79(10–11):573–585. doi:10.1007/s00190-005-0014-8

    Article  Google Scholar 

  • Sato T, Boy J-P, Tamura Y, Matsumoto K, Asari K, Plag H-P, Francis O (2006) Gravity tide and seasonal gravity variation at Ny-Ålesund, Svalbard in Arctic. J Geodyn 41(1–3):234–241. doi:10.1016/j.jog.2005.08.016

    Article  Google Scholar 

  • Van Camp M, Vanclooster M, Crommen O, Petermans T, Verbeeck K, Meurers B, van Dam T, Dassargues A (2006) Hydrogeological investigations at the Membach station, Belgium, and application to correct long periodic gravity variations. J Geophys Res 111:B10403. doi:10.1029/2006JB004405

    Article  Google Scholar 

  • Virtanen H, Tervo M, Bilker-Koivula M (2006) Comparison of superconducting gravimeter observations with hydrological models of various spatial extents. Bull Inf Marées Terr 142:11361–11368

    Google Scholar 

  • Weise A, Kroner C, Abe M, Ihde J, Jentzsch G, Naujoks M, Wilmes H, Wziontek H (2009) Gravity field variations from superconducting gravimeters for GRACE validation. J Geodyn 48(3–5):325–330. doi:10.1016/j.jog.2009.09.034

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Manfred Fink, Norbert Kasch, Wernfrid Kühnel, Matthias Meininger, Martin Rasmussen and Stefanie Zeumann from Friedrich-Schiller-University-Jena for their help in the extensive field work. We gratefully acknowledge Hans-Jürgen Götze and Sabine Schmidt from Chrisitan-Albrechts-University Kiel for fruitful discussions and for providing the software IGMAS. The authors thank the German Research Foundation (DFG) for their funding of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Naujoks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Naujoks, M., Eisner, S., Kroner, C., Weise, A., Krause, P., Jahr, T. (2012). Local Hydrological Information in Gravity Time Series: Application and Reduction. In: Kenyon, S., Pacino, M., Marti, U. (eds) Geodesy for Planet Earth. International Association of Geodesy Symposia, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20338-1_36

Download citation

Publish with us

Policies and ethics