Skip to main content

Descriptions and Challenges of AFM Based Nanorobotic Systems

  • Chapter
Atomic Force Microscopy Based Nanorobotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 71))

Abstract

Nanorobotics means literally the study of robots that are nanoscale in typical size, i.e. nanorobots,which have yet to be realized. Generally, nanorobots are large robots capable of manipulation nanoscale objects with nanometer resolution, e.g. a AFMbased nanorobotic manipulation system and a scanning electron microscope (SEM) equipped with a nanomanipulator.When studying nanorobotics, we first have to understand physics that underlies interactions at the nanoscale. At microscale, some basic micromanipulation problems attributed to the scale affects have been identified. We have seen how the surface effects, instead of volume effects, dominate the physical phenomena at this scale. Most of these scaling laws are still available at the nanoscale. However, the scale affects become more severe at the nanoscale due to the additional three orders of magnitude in size reduction, and it becomes much more difficult to predict and control because of more scale effects and uncertainties introduced when the nanomanipulation performed in the nanoworld.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eigler, D.M., Schweizer, E.K.: Positioning single atoms with a scanning tunneling microscope. Nature 344, 524–526 (1990)

    Article  Google Scholar 

  2. Fukuda, T., Arai, F., Dong, L.X.: Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations. Proc. IEEE 91, 1803–1818 (2003)

    Article  Google Scholar 

  3. Dong, L.X., Arai, F., Fukuda, T.: Electron-beam-induced deposition with carbon nanotube emitters. Appl. Phys. Lett. 81, 1919–1921 (2002)

    Article  Google Scholar 

  4. Dong, L.X., Arai, F., Fukuda, T.: Destructive constructions of nanostructures with carbon nanotubes through nanorobotic manipulation. IEEE/ASME Trans. Mechatronics 9, 350–357 (2004)

    Article  Google Scholar 

  5. Fahlbuscha, S., Mazerolleb, S., Breguetb, J.-M., Steineckerc, A., Agnusd, J., Pérezd, R., Michlera, J.: Nanomanipulation in a scanning electron microscope. J. Materials Processing Technology 167(2-3), 371–382 (2005)

    Article  Google Scholar 

  6. Molhave, K., Wich, T., Kortschack, A., Boggild, P.: Pick-and-place nanomanipulation using microfabricated grippers. Nanotechnology 17, 2434–2441 (2006)

    Article  Google Scholar 

  7. Nakajima, M., Arai, F., Fukuda, T.: In situ measurement of Young’s modulus of carbon nanotubes inside a TEM through a hybrid nanorobotic manipulation system. IEEE/ASME Trans. Nanotechnology 5, 243–248 (2006)

    Article  Google Scholar 

  8. Dong, L.X., Tao, X.Y., Zhang, L., Nelson, B.J., Zhang, X.B.: Nanorobotic spot welding: controlled metal deposition with attogram precision from copper-filled carbon nanotubes. Nano Lett. 7, 58–63 (2007)

    Article  Google Scholar 

  9. Andersen, K.N., Petersen, D.H., Carlson, K., Molhave, K., Sardan, O., Horsewell, A., Eichhorn, V., Fatikow, S., Boggild, P.: Multimodal Electrothermal Silicon Microgrippers for Nanotube Manipulation. IEEE/ASME Trans. Nanotechnology 8, 76–85 (2009)

    Article  Google Scholar 

  10. Leach, J., Sinclair, G., Jordan, P., Courtial, J., Padgett, M.J., Cooper, J., Laczik, Z.J.: 3D manipulation of particles into crystal structures using holographic optical tweezers. Opt. Express 12, 220–226 (2004)

    Article  Google Scholar 

  11. de Vries Anthony, H.B., Krenn, B.E., van Driel, R., Kanger, J.S.: Micro Magnetic Tweezers for Nanomanipulation Inside Live Cells. Biophysical Journal 88, 2137–2144 (2005)

    Article  Google Scholar 

  12. Martin, M., Roschier, L., Hakonen, P., Parts, Ü., Paalanen, M., Schleicher, B., Kauppinen, E.I.: Manipulation of Ag nanoparticles utilizing noncontact atomic force microscopy. Appl. Phys. Lett. 73, 1505–1507 (1998)

    Article  Google Scholar 

  13. Sitti, M., Hashimoto, H.: Controlled pushing of nanoparticles: modeling and experiments. IEEE/ASME Trans. Mechatron. 5(2), 199–211 (2000)

    Article  Google Scholar 

  14. Resch, R., Lewis, D., Meltzer, S., Montoya, N., Koel, B.E., Madhukar, A., Requicha, A.A.G., Will, P.: Manipulation of gold nanoparticles in liquid environments using scanning force microscopy. Ultramicroscopy 82, 135–139 (2000)

    Article  Google Scholar 

  15. Albrecht, P.M., Lyding, J.W.: Lateral manipulation of single-walled carbon nanotubes on H-passivated Si(100) surfaces with an ultra-highvacuum scanning tunneling microscope. Small 3, 146–152 (2007)

    Article  Google Scholar 

  16. Tranvouez, E., Orieux, A., Boer-Duchemin, E., Devillers, C.H., Huc, V., Comtet, G., Dujardin, G.: Manipulation of cadmium selenide nanorods with an atomic force microscope. Nanotechnology 20, 165304 (2009)

    Article  Google Scholar 

  17. Sitti, M.: Atomic force microscope probe based controlled pushing for nanotribological characterization. IEEE/ASME Trans. Mechatron. 9, 343–349 (2004)

    Article  Google Scholar 

  18. Palacio, M., Bhushan, B.: A nanoscale friction investigation during the manipulation of nanoparticles in controlled environments. Nanotechnology 19, 315710 (2008)

    Article  Google Scholar 

  19. Dietzel, D., Monninghoff, T., Jansen, L., Fuchs, H., Ritter, C., Schwarz, U.D., Schirmeisen, A.: Interfacial friction obtained by lateral manipulation of nanoparticles using atomic force microscopy techniques. J. Appl. Phys. 102, 084306 (2007)

    Article  Google Scholar 

  20. Conache, G., Gray, S.M., Ribayrol, A., Fröberg, L.E., Samuelson, L., Pettersson, H., Montelius, L.: Friction measurements of inAs nanowires on silicon nitride by AFM manipulation. Small 5, 203–207 (2009)

    Article  Google Scholar 

  21. Dietzel, D., Monninghoff, T., Jansen, L., Fuchs, H., Ritter, C., Schwarz, U.D., Schirmeisen, A.: Interfacial friction obtained by lateral manipulation of nanoparticles using atomic force microscopy techniques. J. Appl. Phys. 102, 084306 (2007)

    Article  Google Scholar 

  22. Xu, B., Tao, N.J.: Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003)

    Article  Google Scholar 

  23. Grill, L., Rieder, K., Moresco, F., Stojkovic, S., Gourdon, A., Joachim, C.: Exploring the interatomic forces between tip and single molecules during STM manipulation. Nano Lett. 6, 2685–2689 (2006)

    Article  Google Scholar 

  24. Mougin, K., Gnecco, E., Rao, A., Cuberes, M.T., Jayaraman, S., McFarland, E.W., Haidara, H., Meyer, E.: Manipulation of gold nanoparticles: influence of surface chemistry, temperature, and environment (vacuum versus ambient atmosphere). Langmuir. 24, 1577–1581 (2008)

    Article  Google Scholar 

  25. Whittaker, J.D., Minot, E.D., Tanenbaum, D.M., McEuen, P.L., Davis, R.C.: Measurement of the adhesion force between carbon Nanotubes and a silicon dioxide substrate. Nano Lett. 6, 953–957 (2006)

    Article  Google Scholar 

  26. Li, X., Gao, H., Murphy, C.J., Caswell, K.K.: Nanoindentation of silver sanowires. Nano Lett. 3, 1495–1498 (2003)

    Article  Google Scholar 

  27. Bordag, M., Ribayrol, A., Conache, G., Fröberg, L.E., Gray, S., Samuelson, L., Montelius, L., Pettersson, H.: Shear Stress measurements on InAs nanowires by AFM manipulation. Small 3, 1398–1401 (2007)

    Article  Google Scholar 

  28. Wu, B., Heidelberg, A., Boland, J.J.: Mechanical properties of ultrahigh-strength gold nanowires. Nature Materials 4, 525–529 (2005)

    Article  Google Scholar 

  29. Ni, H., Li, X.D.: Youngs modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques. Nanotechnology 17, 3591–3597 (2006)

    Article  Google Scholar 

  30. Brown, K.A., Aguilar, J.A., Westervelt, R.M.: Coaxial atomic force microscope tweezers. Appl. Phys. Lett. 96, 123109 (2010)

    Article  Google Scholar 

  31. Toset, J., Gomila, G.: Three-dimensional manipulation of gold nanoparticles with electro-enhanced capillary forces. Appl. Phys. Lett. 96, 043117 (2010)

    Article  Google Scholar 

  32. Xie, H., Haliyo, D.S., Régnier, S.: A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly. Nanotechnology 20, 215301 (2009)

    Article  Google Scholar 

  33. Sitti, M., Hashimoto, H.: Teleoperated touch feedback from the surfaces at the nanoscale: Modeling and experiments. IEEE/ASME Trans. Mechatron. 8, 287–298 (2003)

    Article  Google Scholar 

  34. Li, G.Y., Xi, N., Yu, M.M., Fung, W.K.: Development of augmented reality system for afm-based nanomanipulation. IEEE/ASME Trans. Mechatron. 9, 358–365 (2004)

    Article  Google Scholar 

  35. Li, G.Y., Xi, N., Chen, H.P., Pomeroy, C., Prokos, M.: ’Videolized’ atomic force microscopy for interactive nanomanipulation and nanoassembly. IEEE Trans. Nanotechnol. 4, 605–615 (2005)

    Article  Google Scholar 

  36. Vogl, W., Ma, B.K.-L., Sitti, M.: Augmented reality user interface for an atomic force microscope based nanorobotic system. IEEE Trans. Nanotechnol. 5, 397–406 (2006)

    Article  Google Scholar 

  37. Kim, S.G., Sitti, M.: Task-based and stable telenanomanipulation in a nanoscale virtual environment. IEEE Trans. Autom. Sci. Eng. 3(3), 240–247 (2006)

    Article  Google Scholar 

  38. Mokaberi, B., Requicha, A.A.G.: Drift compensation for automatic nanomanipulation with scanning probe microscopes. IEEE Trans. Autom. Sci. Eng. 3, 199–207 (2006)

    Article  Google Scholar 

  39. Mokaberi, B., Requicha, A.A.G.: Compensation of scanner creep and hysteresis for AFM nanomanipulation. IEEE Trans. Autom. Sci. Eng. 5, 197–206 (2008)

    Article  Google Scholar 

  40. Xie, H., Haliyo, D.S., Régnier, S.: Characterizing piezoscanner hysteresis and creep using optical levers and a reference nanopositioning stage. Rev. Sci. Instrum. 80, 046102 (2009)

    Article  Google Scholar 

  41. Krohs, F., Onal, C., Sitti, M., Fatikow, S.: Towards Automated Nanoassembly With the Atomic Force Microscope: A Versatile Drift Compensation Procedure. J. Dyn. Sys. Meas. Control 131, 061106 (2009)

    Article  Google Scholar 

  42. Ermakov, A.V., Gatfunkel, E.L.: A novel AFM/STM/SEM system. Rev. Sci. Instrum. 65, 2853–2854 (1994)

    Article  Google Scholar 

  43. Thomas, Ch., Heiderhoff, R., Balk, L.J.: Acoustic near-field conditions in an ESEM/AFM hybrid system. J. Physics: Conference Series 61, 1180–1185 (2007)

    Article  Google Scholar 

  44. Sitti, M.: Teleoperated 2-D micro/nanomanipulation using an atomic force microscope. PhD Thesis, University of Tokyo, Japan (1999), http://www.cs.cmu.edu/msitti/pub.html

  45. Ando, T., Uchihashi, T., Fukuma, T.: High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Progress in Surface Science 83, 337–437 (2008)

    Article  Google Scholar 

  46. Kim, S., Ratchford, D.C., Li, X.: Atomic force microscope nanomanipulation with simultaneous visual guidance. ACS Nano 3, 2989–2994 (2009)

    Article  Google Scholar 

  47. Ettiger, P., Despont, M., Drechsler, U., Durig, U., Haberle, W., Lutwyche, M.I., Rothuizen, H.E., Stutz, R., Widmer, R., Binnig, G.K.: The ‘Millipede’–More than thousand tips for future AFM storage. IBM J. Research and Development 44, 323–340 (2000)

    Article  Google Scholar 

  48. Xie, H., Régnier, S.: High-efficiency automated nanomanipulation with parallel imaging/manipulation force microscopy. IEEE Trans. Nanotechnol. doi:10.1109/TNANO.2010.2041359

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xie, H., Onal, C., Régnier, S., Sitti, M. (2011). Descriptions and Challenges of AFM Based Nanorobotic Systems. In: Atomic Force Microscopy Based Nanorobotics. Springer Tracts in Advanced Robotics, vol 71. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20329-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20329-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20328-2

  • Online ISBN: 978-3-642-20329-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics