Skip to main content

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 116))

  • 672 Accesses

Abstract

The particle deposition in human upper airway and lung airways were intensively studied. Most of the investigations considered the flow as steady, and the flow was either laminar or turbulent. However, the actually respiratory flow is strongly dependant on time, and the unsteadiness would affect the particle deposition significantly. In this study, we compared the respiratory flow and particle deposition in CT-scanned human upper airway with both steady and unsteady model in laminar regime. The result indicates that the unsteady effect has significant influence on flow and particle deposition in human upper airways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balashazy, I., Hofmann, W., Heistracher, T.: Computation of local enhancement factors for the quantification of particle deposition patterns in airway dividers. Journal of Aerosol Science 30, 185–203 (1999)

    Article  Google Scholar 

  2. Chan, T.L., Schreck, R.M., Lippmann, M.: Effect of the laryngeal jet on particle deposition in human trachea and upper bronchial airway. Journal of Aerosol 11, 447–459 (1980)

    Article  Google Scholar 

  3. Choi, J.W., Tawhai, M.H., Hoffman, E.A., Lin, C.-L.: On intra- and inter-subject variabilities of airflow in the human lungs. Physics of Fluids 21, 101901 (2009)

    Article  Google Scholar 

  4. Comer, J.K., Kleinstreuer, C., Hyun, S., Kim, C.S.: Aerosol transport and deposition in sequentially bifurcating airways. ASME Journal of Biomechanical Engineering 122, 152–158 (2000)

    Article  Google Scholar 

  5. Comer, J.K., Kleinstreuer, C., Kim, C.: Flow structures and particle deposition patterns in double-bifurcation airway models. Part 2. Aerosol transport and deposition. Journal of Fluid Mechanics 435, 55–80 (2001)

    MATH  Google Scholar 

  6. Eitel, G., Schroder, W., Meinke, M.: Numerical investigation of the flow field in the upper human airways. Modeling in Medicine and Biology VIII 13, 103–114 (2009)

    Article  Google Scholar 

  7. Ertbruggen, C.V., Hirsch, C., Paiva, M.: Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics. Journal of Applied Physiology 98, 970–980 (2005)

    Article  Google Scholar 

  8. Grosse, S., Schroder, W., Klaas, M., Klockner, A., Roggenkamp, J.: Time resolved analysis of steady and oscillating flow in the upper human airways. Experiments in Fluids 42, 955–970 (2007)

    Article  Google Scholar 

  9. Heistracher, T., Hofmman, W.: Flow and deposition patterns in successive airway dividers. Annals of Occupational Hygiene 41, 537–542 (1997)

    Google Scholar 

  10. Horsfield, K., Dart, G., Olson, D.E., Filley, G.F., Cumming, G.: Models of the human bronchial tree. J. Applied Physiology 31, 207–217 (1971)

    Google Scholar 

  11. Johnson, J.R., Schroter, R.C.: Deposition of particles in model airways. Journal of Applied Physiology 47, 947–953 (1979)

    Google Scholar 

  12. Kim, C.S., Iglesias, A.J.: Deposition of inhaled particles in bifurcating airway models. I. Inspiratory deposition. Journal of Aerosol Medicine 2, 1–14 (1989)

    Article  MATH  Google Scholar 

  13. Lee, J.W., Goo, I.H., Chung, M.K.: Characteristics of inertial deposition in a double bifurcation. Journal of Aerosol Science 27, 119–138 (1996)

    Article  Google Scholar 

  14. Li, Z., Kleinstreuer, C., Zhang, Z.: Simulation of airflow fields and microparticle deposition in realitic human lung airway models. Part I: Airflow Patterns, European Journal of Mechanics B/Fluids 26, 650–668 (2007)

    Article  MATH  Google Scholar 

  15. Lin, C.L., Tawhai, M.H., McLennan, G., Hoffman, E.A.: Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respiratory Physiology & Neurobiology  157, 295–309 (2007)

    Article  Google Scholar 

  16. Liu, Y., So, R.M.C., Zhang, C.H.: Modeling the bifurcating flow in a human lung airway. Journal of Biomechanics 35, 477–485 (2002)

    Article  Google Scholar 

  17. Liu, Y., So, R.M.C., Zhang, C.H.: Modeling the bifurcating flow in an asymmetric human lung airway. Journal of Biomechanics 36, 951–959 (2003)

    Article  Google Scholar 

  18. Longest, W.P., Vinchurkar, S.: Validating CFD predictions of respiratory aerosol deposition: Effects of upstream transition and turbulence. Journal of Biomechanics 40, 305–316 (2007)

    Article  Google Scholar 

  19. Luo, H.Y., Liu, Y., Yang, X.L.: Particle deposition in obstructed airways. Journal of Biomechanics 40, 3096–3104 (2007)

    Article  Google Scholar 

  20. Luo, H.Y., Liu, Y.: Modeling the Bifurcating Flow in an CT-Scanned Human Lung Airway. J. Biomechanics 41, 2681–2688 (2008)

    Article  Google Scholar 

  21. Luo, H.Y., Liu, Y.: Particle deposition in a CT-scanned human lung airway. Journal of Biomechanics 42, 1869–1876 (2009)

    Article  MathSciNet  Google Scholar 

  22. Su, W.C., Cheng, Y.S.: Deposition of man-made fibers in human respiratory airway casts. Journal Aerosol Science 40, 270–284 (2009)

    Article  Google Scholar 

  23. Xi, J.X., Longest, P.W.: Effects of oral airway geometry characteristics on the diffusional deposition of inhaled nanoparticles. J. of Biomechanical Engineering 130, 011008 (2008)

    Article  Google Scholar 

  24. Weible, E.R.: Morphometry of the human lung. Academic, New York (1963)

    Google Scholar 

  25. Yang, X.L., Liu, Y., So, R.M.C., Yang, J.M.: The Effect of Inlet Velocity Profile on the Bifurcation COPD Airway Flow. Computers in Biology and Medicine 36, 181–194 (2006)

    Google Scholar 

  26. Zhang, Z., Kleinstreuer, C.: Effect of particle inlet distribution on deposition in a triple bifurcation lung airway model. Journal of Aerosol Medicine 14, 13–29 (2001)

    Article  Google Scholar 

  27. Zhang, Z., Kleinstreuer, C., Kim, C.S.: Cyclic micron-size particle inhalation and deposition in a triple bifurcation lung airway model. Journal of Aerosol Science 33, 257–281 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Y., Liu, Y., Luo, H., Wong, M.C. (2011). The Effect of Unsteadiness on Particle Deposition in Human Upper and Lung Airways. In: Klaas, M., Koch, E., Schröder, W. (eds) Fundamental Medical and Engineering Investigations on Protective Artificial Respiration. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20326-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20326-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20325-1

  • Online ISBN: 978-3-642-20326-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics