Skip to main content

Mechanostimulation and Mechanics Analysis of Lung Cells, Lung Tissue and the Entire Lung Organ

  • Conference paper
Fundamental Medical and Engineering Investigations on Protective Artificial Respiration

Abstract

Analysis of respiratory mechanics under mechanical ventilation is crucial for a lung-protective ventilation setting. However, under the conditions of mechanostimulation caused by mechanical ventilation, only the global components of mechanical impedance can be determined. These include the airflow resistance, compliance, and inertance. Whereas in the case of conventionalmechanical ventilation, the organ integrity of the lung is certainly preserved, it is practically impossible to obtain quantitative information about the local pulmonary mechanics, for instance at the alveolar level. Analysis of pulmonary mechanics at a local level requires sophisticated experimental techniques for the mechanostimulation of anatomical subunits of the lung. In this chapter, we summarize our investigations in the field of experimental mechanostimulation and mechanics analysis of lung cells, lung tissue and entire lung organ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adkins, J.E., Rivlin, R.S.: Large Elastic Deformations of Isotropic Materials. IX. The Deformation of Thin Shells. Phil Trans. R. Soc. Lond. A 244(888), 505–531 (1952)

    MATH  MathSciNet  Google Scholar 

  2. Allen, G.B., Pavone, L.A., DiRocco, J.D., Bates, J.H., Nieman, G.F.: Pulmonary impedance and alveolar instability during injurious ventilation in rats. J. Appl. Physiol. 99(2), 723–730 (2005)

    Article  Google Scholar 

  3. Armbruster, C., Schneider, M., Schumann, S., Gamerdinger, K., Cuevas, M., Rausch, S., Baaken, G., Guttmann, J.: Characteristics of highly flexible PDMS membranes for long-term mechanostimulation of biological tissue. J. Biomed. Mater. Res. B. Appl. Biomater 91(2), 700–705 (2009)

    Google Scholar 

  4. Banes, A.J., Gilbert, J., Taylor, D., Monbureau, O.: A new vacuum-operated stress-providing instrument that applies static or variable duration cyclic tension or compression to cells in vitro. J. Cell Sci. 75, 35–42 (1985)

    Google Scholar 

  5. Bates, J.H., Irvin, C.G.: Time dependence of recruitment and derecruitment in the lung: a theoretical model. J. Appl. Physiol. 93(2), 705–713 (2002)

    Google Scholar 

  6. Bickenbach, J., Czaplik, M., Dembinski, R., Pelosi, P., Schroeder, W., Marx, G., Rossaint, R.: In vivo microscopy in a porcine model of acute lung injury. Respir. Physiol. Neurobiol. 172(3), 192–200 (2010)

    Article  Google Scholar 

  7. Bickenbach, J., Dembinski, R., Czaplik, M., Meissner, S., Tabuchi, A., Mertens, M., Knels, L., Schroeder, W., Pelosi, P., Koch, E., Kuebler, W.M., Rossaint, R., Kuhlen, R.: Comparison of two in vivo microscopy techniques to visualize alveolar mechanics. J. Clin. Monit. Comput. 23(5), 323–332 (2009)

    Article  Google Scholar 

  8. Brown, T.D., Bottlang, M., Pedersen, D.R., Banes, A.J.: Development and Experimental Validation of a Fluid/Structure-Interaction Finite Element Model of a Vacuum-Driven Cell Culture Mechanostimulus System. Comput. Methods Biomech. Biomed. Engin. 3(1), 65–78 (2000)

    Article  Google Scholar 

  9. Carney, D.E., Bredenberg, C.E., Schiller, H.J., Picone, A.L., McCann, U.G., Gatto, L.A., Bailey, G., Fillinger, M., Nieman, G.F.: The Mechanism of Lung Volume Change during Mechanical Ventilation. Am. J. Respir. Crit. Care Med. 160(5), 1697–1702 (1999)

    Google Scholar 

  10. Chiumello, D., Carlesso, E., Cadringher, P., Caironi, P., Valenza, F., Polli, F., Tallarini, F., Cozzi, P., Cressoni, M., Colombo, A., Marini, J.J., Gattinoni, L.: Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 178(4), 346–355 (2008)

    Article  Google Scholar 

  11. Daly, B.D., Norman, J.C.: Alveolar morphometrics. 3. Preliminary results with in vivo videomicroscopy. Chest 65(1), 67–68 (1974)

    Article  Google Scholar 

  12. Daly, B.D., Parks, G.E., Edmonds, C.H., Hibbs, C.W., Norman, J.C.: Dynamic alveolar mechanics as studied by videomicroscopy. Respir. Physiol. 24(2), 217–232 (1975)

    Article  Google Scholar 

  13. Dassow, C., Wiechert, L., Martin, C., Schumann, S., Müller-Newen, G., Pack, O., Guttmann, J., Wall, W.A., Uhlig, S.: Biaxial distension of precision-cut lung slices. J. Appl. Physiol. 108(3), 713–721 (2010)

    Article  Google Scholar 

  14. DiRocco, J.D., Carney, D.E., Nieman, G.F.: Correlation between alveolar recruitment/derecruitment and inflection points on the pressure-volume curve. Intensive Care Med. 33(7), 1204–1211 (2007)

    Article  Google Scholar 

  15. Dreyfuss, D., Soler, P., Basset, G., Saumon, G.: High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am. Rev. Respir. Dis. 137(5), 1159–1164 (1988)

    Google Scholar 

  16. Fermor, B., Jeffcoat, D., Hennerbichler, A., Pisetsky, D.S., Weinberg, J.B., Guilak, F.: The effects of cyclic mechanical strain and tumor necrosis factor alpha on the response of cells of the meniscus. Osteoarthritis Cartilage 12(12), 956–962 (2004)

    Article  Google Scholar 

  17. Fink, C., Fermor, B., Weinberg, J.B., Pisetsky, D.S., Misukonis, M.A., Guilak, F.: The effect of dynamic mechanical compression on nitric oxide production in the meniscus. Osteoarthritis Cartilage 9(5), 481–487 (2001)

    Article  Google Scholar 

  18. Forrest, J.B.: The effect of changes in lung volume on the size and shape of alveoli. J. Physiol. 210(3), 533–547 (1970)

    Google Scholar 

  19. Garvin, J., Qi, J., Maloney, M., Banes, A.J.: Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng. 9(5), 967–979 (2003)

    Article  Google Scholar 

  20. Guttmann, J., Eberhard, L., Fabry, B., Zappe, D., Bernhard, H., Lichtwarck-Aschoff, M., Adolph, M., Wolff, G.: Determination of volume dependent respiratory sytem mechanics in mechanically ventilated patients using the new SLICE method. Technology and Health Care 2, 175–191 (1994)

    Google Scholar 

  21. Guttmann, J.: Analysis of respiratory mechanics during artificial ventilation. Biomed. Tech. 43(4), 107–115 (1998)

    Article  Google Scholar 

  22. Haas, C.F.: Lung protective mechanical ventilation in acute respiratory distress syndrome. Respir. Care Clin. N. Am. 9(3), 363–396 (2003)

    Article  MathSciNet  Google Scholar 

  23. Haitsma, J.J., Lachmann, B.: Lung protective ventilation in ARDS: the open lung maneuver. Minerva Anestesiol. 72(3), 117–132 (2006)

    Google Scholar 

  24. Hsu, F.P.K., Schwab, C., Rigamonti, D., Humphrey, J.D.: Identification of response functions from axisymmetric membrane inflation tests: Implications for biomechanics. Internat J. Solids Structures 31, 3375–3386 (1994)

    Article  MATH  Google Scholar 

  25. Klaesner, J.W., Commean, P.K., Hastings, M.K., Zou, D., Mueller, M.J.: Accuracy and reliability testing of a portable soft tissue indentor. IEEE Trans. Neural Syst. Rehabil. Eng. 9(2), 232–240 (2001)

    Article  Google Scholar 

  26. Krahl, V.E.: A Method of Studying the Living Lung in the Closed Thorax, and Some Preliminary Observations. Angiology 14(4), 149–159 (1963)

    Article  Google Scholar 

  27. Kumar, A., Falke, K.J., Geffin, B., Aldredge, C.F., Laver, M.B., Lowenstein, E., Pontoppidan, H.: Continuous positive-pressure ventilation in acute respiratory failure. N. Engl. J. Med. 283(26), 1430–1436 (1970)

    Article  Google Scholar 

  28. Lakshmanan, V., Yang, T.H., Reuben, R.L., Hammer, J., Else, R.W.: Multi-scale techniques of measuring the dynamic properties of biological tissues. Technol. Health Care 14(4–5), 297–309 (2006)

    Google Scholar 

  29. Li, B., Chen, J., Wang, J.H.: RGD peptide-conjugated poly(dimethylsiloxane) promotes adhesion, proliferation, and collagen secretion of human fibroblasts. J. Biomed. Mater. Res. A 79(4), 989–998 (2006)

    MathSciNet  Google Scholar 

  30. Liu, H., Stahl, C.A., Moeller, K., Schneider, M., Ganzert, S., Zhao, Z.Q., Tong, X.W., Guttmann, J.: Alveolar stability under different combinations of positive end-expiratory pressure and tidal volume: alveolar microscopy in isolated injured rat lungs. Chin. Med. J. (Engl.) 123(4), 406–411 (2010)

    Google Scholar 

  31. Lum, H., Huang, I., Mitzner, W.: Morphological evidence for alveolar recruitment during inflation at high transpulmonary pressure. J. Appl. Physiol. 68(6), 2280–2286 (1990)

    Google Scholar 

  32. Martin, C., Uhlig, S., Ullrich, V.: Videomicroscopy of methacholine-induced contraction of individual airways in precision-cut lung slices. Eur. Respir. J. 9(12), 2479–2487 (1996)

    Article  Google Scholar 

  33. Matheson, L.A., Maksym, G.N., Santerre, J.P., Labow, R.S.: Cyclic biaxial strain affects U937 macrophage-like morphology and enzymatic activities. J. Biomed. Mater. Res. A 76(1), 52–62 (2006)

    Google Scholar 

  34. Matsumoto, T., Delafontaine, P., Schnetzer, K.J., Tong, B.C., Nerem, R.M.: Effect of uniaxial, cyclic stretch on the morphology of monocytes/macrophages in culture. J. Biomech. Eng. 118(3), 420–422 (1996)

    Article  Google Scholar 

  35. McCann, U.G., Schiller, H.J., Gatto, L.A., Steinberg, J.M., Carney, D.E., Nieman, G.F.: Alveolar mechanics alter hypoxic pulmonary vasoconstriction. Crit. Care Med. 30(6), 1315–1321 (2002)

    Article  Google Scholar 

  36. Mead, J., Takishima, T., Leith, D.: Stress distribution in lungs: a model of pulmonary elasticity. J. Appl. Physiol. 28(5), 596–608 (1970)

    Google Scholar 

  37. Meissner, S., Knels, L., Krueger, A., Koch, T., Koch, E.: Simultaneous three-dimensional optical coherence tomography and intravital microscopy for imaging subpleural pulmonary alveoli in isolated rabbit lungs. J. Biomed. Opt. 14(5), 054020 (2009)

    Article  Google Scholar 

  38. Meissner, S., Knels, L., Schnabel, C., Koch, T., Koch, E.: Three-dimensional Fourier domain optical coherence tomography in vivo imaging of alveolar tissue in the intact thorax using the parietal pleura as a window. J. Biomed. Opt. 15(1), 016030 (2010)

    Article  Google Scholar 

  39. Mertens, M., Tabuchi, A., Meissner, S., Krueger, A., Schirrmann, K., Kertzscher, U., Pries, A.R., Slutsky, A.S., Koch, E., Kuebler, W.M.: Alveolar dynamics in acute lung injury: heterogeneous distension rather than cyclic opening and collapse. Crit. Care Med. 37(9), 2604–2611 (2009)

    Article  Google Scholar 

  40. Nieman, G.F., Bredenberg, C.E., Clark, W.R., West, N.R.: Alveolar function following surfactant deactivation. J. Appl. Physiol. 51(4), 895–904 (1981)

    Google Scholar 

  41. Parker, J.C., Hernandez, L.A., Peevy, K.J.: Mechanisms of ventilator-induced lung injury. Crit. Care Med. 21(1), 131–143 (1993)

    Article  Google Scholar 

  42. Plataki, M., Hubmayr, R.D.: The physical basis of ventilator-induced lung injury. Expert Rev. Respir. Med. 4(3), 373–385 (2010)

    Article  Google Scholar 

  43. Pugin, J., Dunn, I., Jolliet, P., Tassaux, D., Magnenat, J.L., Nicod, L.P., Chevrolet, J.C.: Activation of human macrophages by mechanical ventilation in vitro. Am. J. Physiol. 275(6 Pt 1), L1040–L1050 (1998)

    Google Scholar 

  44. Sanchez-Esteban, J., Cicchiello, L.A., Wang, Y., Tsai, S.W., Williams, L.K., Torday, J.S., Rubin, L.P.: Mechanical stretch promotes alveolar epithelial type II cell differentiation. J. Appl. Physiol. 91(2), 589–595 (2001)

    Google Scholar 

  45. Schumann, S., Stahl, C.A., Moeller, K., Schneider, M., Metzke, R., Wall, W.A., Priebe, H.J., Guttmann, J.: Contact-free determination of material characteristics using a newly developed pressure-operated strain-applying bioreactor. J. Biomed. Mater Res. B. Appl. Biomater 86B(2), 483–492 (2008)

    Article  Google Scholar 

  46. Schumann, S., Dassow, C., Armbruster, C., Schneider, M., Uhlig, S., Guttmann, J.: Dynamic videomicroscopy reveals correspondence between mechanical characteristics of lung tissue and local morphology on alveolar scale. In: Proceedings of ECIFMBE IFMBE, vol. 22, pp. 2023–2026 (2008)

    Google Scholar 

  47. Schumann, S., Burcza, B., Haberthür, C., Lichtwarck-Aschoff, M., Guttmann, J.: Estimating intratidal nonlinearity of respiratory system mechanics: a model study using the enhanced gliding-SLICE method. Physiol. Meas. 30(12), 1341–1356 (2009)

    Article  Google Scholar 

  48. Schumann, S., Burcza, B., Haberthür, C., Lichtwarck-Aschoff, M., Guttmann, J.: Low pulmonary artery flush perfusion pressure combined with high positive end-expiratory pressure reduces oedema formation in isolated porcine lungs. Physiol. Meas. 31(2), 261–272 (2010)

    Article  Google Scholar 

  49. Schwenninger, D., Moeller, K., Liu, H., Guttmann, J.: Classification of alveolar microscopy videos with respect to alveolar stability. In: 4th European Conference of the International Federation for Medical and Biological Engineering (2009), doi:10.1007/978-3-540-89208-3_151

    Google Scholar 

  50. Schwenninger, D., Moeller, K., Liu, H., Guttmann, J.: Automated analysis of intratidal dynamics of alveolar geometry from microscopic endoscopy. IEEE Trans. Biomed. Eng. 57(2), 415–421 (2010)

    Article  Google Scholar 

  51. Schwenninger, D., Schumann, S., Guttmann, J.: In vivo characterization of mechanical tissue properties using endoscopic microscopy and inverse finite element analysis. J. Biomech. (2010) (under review)

    Google Scholar 

  52. Scott, J.E., Yang, S.Y., Stanik, E., Anderson, J.E.: Influence of strain on [3H]thymidine incorporation, surfactant-related phospholipid synthesis, and cAMP levels in fetal type II alveolar cells. Am. J. Respir. Cell Mol. Biol. 8(3), 258–265 (1993)

    Google Scholar 

  53. Selby, J.C., Shannon, M.A.: Apparatus for measuring the finite load-deformation behavior of a sheet of epithelial cells cultured on a mesoscopic freestanding elastomer membrane. Rev. Sci. Instrum. 78(9), 094301 (2007)

    Article  Google Scholar 

  54. Stahl, C.A., Schumann, S., Knorpp, H., Schneider, M., Moeller, K., Guttmann, J.: Intravital endo-microscopy of alveoli: a new method to visualize alveolar dynamics. J. Biomech. 39, S598 (2006)

    Article  Google Scholar 

  55. Stefaniak, M.S., Krumdiek, C.L., Spall, R.D., Gandolfi, A.J., Brendel, K.: Biochemical and histological characterization of agar-filled precision cut rat lung slices in dynamic organ culture as an in vitro tool. In: Vitro. Toxicol., vol. 5(1), pp. 7–20 (1992)

    Google Scholar 

  56. Tabuchi, A., Mertens, M., Kuppe, H., Pries, A.R., Kuebler, W.M.: Intravital microscopy of the murine pulmonary microcirculation. J. Appl. Physiol. 104(2), 338–346 (2008)

    Article  Google Scholar 

  57. Tremblay, L., Valenza, F., Ribeiro, S.P., Li, J., Slutsky, A.S.: Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J. Clin. Invest. 99(5), 944–952 (1997)

    Article  Google Scholar 

  58. Trzewik, J., Ates, M., Artmann, G.M.: A novel method to quantify mechanical tension in cell monolayers. Biomed. Tech. (Berl.) 47(Suppl 1), 379–381 (2002)

    Article  Google Scholar 

  59. Vande Geest, J.P., Di Martino, E.S., Vorp, D.A.: An analysis of the complete strain field within Flexercell membranes. J. Biomech. 37(12), 1923–1928 (2004)

    Article  Google Scholar 

  60. Vlahakis, N.E., Valenza, F., Ribeiro, S.P., Li, J., Slutsky, A.S.: Stretch induces cytokine release by alveolar epithelial cells in vitro. Am. J. Physiol. 277(1 Pt 1), L167–L173 (1999)

    Google Scholar 

  61. Webb, H.H., Tierney, D.F.: Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am. Rev. Respir. Dis. 110(5), 556–565 (1974)

    Google Scholar 

  62. Wineman, A., Wilson, D., Melvin, J.W.: Material identification of soft tissue using membrane inflation. J. Biomech. 12(11), 841–850 (1979)

    Article  Google Scholar 

  63. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schumann, S., Gamerdinger, K., Armbruster, C., Dassow, C., Schwenninger, D., Guttmann, J. (2011). Mechanostimulation and Mechanics Analysis of Lung Cells, Lung Tissue and the Entire Lung Organ. In: Klaas, M., Koch, E., Schröder, W. (eds) Fundamental Medical and Engineering Investigations on Protective Artificial Respiration. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20326-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20326-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20325-1

  • Online ISBN: 978-3-642-20326-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics