Skip to main content

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 116))

Abstract

This chapter is concerned with computational modelling of the respiratory system against the background of acute lung diseases and mechanical ventilation. Conceptually, we divide the lung into two major subsystems, namely the conducting airways and the respiratory zone. Due to their respective complexity, both parts are out of range for a simulation resolving all relevant length scales. Therefore, we develop novel multi-scale approaches taking into account the unresolved parts appropriately. In the respiratory zone, an alveolar ensemble is modelled considering not only tissue behaviour but also the influence of the covering surfactant film. On the global scale, a homogenised parenchyma model is derived from experiments on living lung tissue. At certain hotspots, novel nested multi-scale procedures are utilised to simulate the dynamic behaviour of lung parenchyma as a whole while still resolving alveolar scales locally. In the tracheo-bronchial region, CT-based geometries are employed in fluid-structure interaction simulations. Physiological outflow boundary conditions are derived by considering the impedance of the unresolved parts of the lung in a fully coupled 3D-0D procedure. Finally, a novel coupling approach enables the connection of 3D parenchyma and airway models into one overall lung model for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al Jamal, R., Roughley, P.J., Ludwig, M.S.: Effect of glycosaminoglycan degradation on lung tissue viscoelasticity. American Journal of Physiology – Lung Cellular and Molecular Physiology 280, L306–L315 (2001)

    Google Scholar 

  • Amato, M.B., Barbas, C.S., Medeiros, D.M., Magaldi, R.B., Schettino, G.P., Lorenzi-Filho, G., Kairalla, R.A., Deheinzelin, D., Munoz, C., Oliveira, R., Takagaki, T.Y., Carvalho, C.R.: Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. The New England Journal of Medicine 338, 347–354 (1998)

    Article  Google Scholar 

  • Bastacky, J., Lee, Y., Goerke, J., Ko, H.: Alveolar lining layer is thin and continuous: low-temperature scanning electron microscopy of rat lung. Journal of Applied Physiology 79, 1615–1628 (1995)

    Google Scholar 

  • Cavalcante, F.S.A., Ito, S., Brewer, K., Sakai, H., Alencar, A.M., Almeida, M.P., Andrade Jr., J.S., Majumdar, A., Ingenito, E.P., Suki, B.: Mechanical interactions between collagen and proteoglycans: implications for the stability of lung tissue. Journal of Applied Physiology 98, 672–679 (2005)

    Article  Google Scholar 

  • Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-alpha method. Journal of Applied Mechanics 60, 371–375 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Comerford, A., Förster, C., Wall, W.A.: Structured tree impedance outflow boundary conditions for 3D lung simulations. Journal of Biomechanical Engineering 132, 081002 1–10 (2010a)

    Article  Google Scholar 

  • Comerford, A., Bauer, G., Wall, W.A.: Nanoparticle transport in a realistic model of the tracheobronchial region. International Journal for Numerical Methods in Biomedical Engineering 26, 904–914 (2010b)

    MATH  Google Scholar 

  • Dale, P.J., Matthews, F.L., Schroter, R.C.: Finite element analysis of lung alveolus. Journal of Biomechanics 13(10), 865–873 (1980)

    Article  Google Scholar 

  • Delfino, A., Stergiopulos, N., Moore, J.E., Meister, J.-J.: Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. Journal of Biomechanics 30(8), 777–786 (1997)

    Article  Google Scholar 

  • Denny, E., Schroter, R.C.: A mathematical model for the morphology of the pulmonary acinus. Journal of Biomechanical Engineering 118, 210–215 (1996)

    Article  Google Scholar 

  • Denny, E., Schroter, R.C.: Relationships between alveolar size and fibre distribution in a mammalian lung alveolar duct model. Journal of Biomechanical Engineering 119, 289–297 (1997)

    Article  Google Scholar 

  • Denny, E., Schroter, R.C.: Viscoelastic behaviour of a lung alveolar duct model. Journal of Biomechanical Engineering 122, 143–151 (2000)

    Article  Google Scholar 

  • Denny, E., Schroter, R.C.: A model of non-uniform lung parenchyma distortion. Journal of Biomechanics 39, 652–663 (2006)

    Article  Google Scholar 

  • DiRocco, J., Carney, D., Nieman, G.: The mechanism of ventilator-induced lung injury: role of dynamic alveolar mechanics. In: Yearbook of Intensive Care and Emergency Medicine 2005, pp. 80–92 (2005)

    Google Scholar 

  • Feyel, F., Chaboche, J.-L.: FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials. Computer Methods in Applied Mechanics and Engineering 183, 309–330 (2000)

    Article  MATH  Google Scholar 

  • Fukaya, H., Martin, C.J., Young, A.C., Katsura, S.: Mechanical properties of alveolar walls. Journal of Applied Physiology 25(6), 689–695 (1968)

    Google Scholar 

  • Fung, Y.C.: A model of the lung structure and its validation. Journal of Applied Physiology 64(5), 2132–2141 (1988)

    Google Scholar 

  • Gao, J., Huang, W., Yen, R.T.: Mechanical properties of human lung parenchyma. Biomedical Sciences Instrumentation 42, 172–180 (2006)

    Google Scholar 

  • Gee, M.W., Hu, J.J., Tuminaro, R.S.: A new smoothed aggregation multigrid method for anisotropic problems. Numerical Linear Algebra with Applications 16(1), 19–37 (2008)

    Article  MathSciNet  Google Scholar 

  • Gee, M.W., Dohrmann, C.R., Key, S.W., Wall, W.A.: A uniform nodal strain tetrahedron with isochoric stabilization. International Journal for Numerical Methods in Engineering 78, 429–443 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Gee, M.W., Küttler, U., Wall, W.A.: Truly monolithic algebraic multigrid for fluid-structure interaction. International Journal for Numerical Methods in Engineering (2010) (submitted)

    Google Scholar 

  • Gefen, A., Halpern, P., Shiner, R.J., Schroter, R.C., Elad, D.: Analysis of mechanical stresses within the alveolar septa leading to pulmonary edema. Technology and Health Care 9(3), 257–267 (2001)

    Google Scholar 

  • Green, A.S.: Modelling of peak-flow wall shear stress in major airways of the lung. Journal of Biomechanics 37(2), 661–667 (2004)

    Article  Google Scholar 

  • Hill, R.: Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids 11, 357–372 (1963)

    Article  MATH  Google Scholar 

  • Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity 61, 1–48 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Horsfield, K., Dart, G., Olson, D.E., Filley, G.F., Cumming, G.: Models of the human bronchial tree. Journal of Applied Physiology 31, 207–217 (1971)

    Google Scholar 

  • Kabilan, S., Lin, C., Hoffman, E.A.: Characteristics of airflow in a CT-based ovine lung: a numerical study. Journal of Applied Physiology 102, 1469–1482 (2007)

    Article  Google Scholar 

  • Kamm, R.D.: Airway Wall Mechanics. Annual Review of Biomedical Engineering 1, 47–72 (1999)

    Article  Google Scholar 

  • Karakaplan, A.D., Bieniek, M.P., Skalak, R.: A mathematical model of lung parenchyma. Journal of Biomechanical Engineering 102(2), 124–136 (1980)

    Article  Google Scholar 

  • Kitaoka, H., Tamura, S., Takaki, R.: A three-dimensional model of the human pulmonary acinus. Journal of Applied Physiology 88(6), 2260–2268 (2000)

    Google Scholar 

  • Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modelling of heterogeneous materials. Computational Mechanics 27, 37–48 (2001)

    Article  MATH  Google Scholar 

  • Kowe, R., Schroter, R.C., Matthews, F.L., Hitchings, D.: Analysis of elastic and surface tension effects in the lung alveolus using finite element methods. Journal of Biomechanics 19(7), 541–549 (1986)

    Article  Google Scholar 

  • Küttler, U., Wall, W.A.: Fixed-point fluid-structure interaction solvers with dynamic relaxation. Computational Mechanics 43, 61–72 (2008a)

    Article  MATH  Google Scholar 

  • Küttler, U., Wall, W.A.: Vector extrapolation for strong coupling fluid-structure interaction solvers. Journal of Applied Mechanics 76, 012205-1–7 (2008b)

    Google Scholar 

  • Küttler, U., Gee, M.W., Förster, C., Comerford, A., Wall, W.A.: Coupling strategies for biomedical fluid-structure interaction problems. International Journal for Numerical Methods in Biomedical Engineering (2009), doi:10.1002/cnm.1281

    Google Scholar 

  • Küttler, U., Wall, W.A.: Strong coupling schemes for fluid-structure interaction (2010) (in preparation)

    Google Scholar 

  • Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics 2, 164–168 (1944)

    MATH  MathSciNet  Google Scholar 

  • Liu, Y., So, R.M.C., Zhang, C.H.: Modelling the bifurcating flow in a human lung airway. Journal of Biomechanics 35, 465–473 (2002)

    Article  Google Scholar 

  • Ma, B., Lutchen, K.R.: An anatomically based hybrid computational model of the human lung and its application to low frequency oscillatory mechanics. Annals of Biomedical Engineering 14, 1691–1704 (2006)

    Article  Google Scholar 

  • Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics 11(2), 431–441 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  • Martin, C., Uhlig, S., Ullrich, V.: Videomicroscopy of methacholine-induced contraction of individual airways in precision-cut lung slices. European Respiratory Journal 9, 2479–2487 (1996)

    Article  Google Scholar 

  • Miehe, C.: Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Computer Methods in Applied Mechanics and Engineering 192, 559–591 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Oberdörster, G.: Pulmonary effects of inhaled ultrafine particles. International Archives of Occupational and Environmental Health 74, 1–8 (2001)

    Article  Google Scholar 

  • Olufsen, M.S., Peskin, C.S., Kim, W.Y., Pedersen, E.M., Nadim, A., Larsen, J.: Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Annals of Biomedical Engineering 28, 1281–1299 (2000)

    Article  Google Scholar 

  • Otis, D.R., Ingenito, E.P., Kamm, R.D., Johnson, M.: Dynamic surface tension of surfactant TA: experiments and theory. Journal of Applied Physiology 77(6), 2681–2688 (1994)

    Google Scholar 

  • Pedley, T.J.: Pulmonary fluid dynamics. Annual Review of Fluid Mechanics 9, 229–274 (1977)

    Article  Google Scholar 

  • Ranieri, V.M., Suter, P.M., Tortorella, C., Tullio, R.D., Dayer, J.M., Brienza, A., Bruno, F., Slutsky, A.S.: Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. The Journal of the American Medical Association 282, 54–61 (1999)

    Article  Google Scholar 

  • Rausch, S., Haberthür, D., Schittny, J.C., Wall, W.A.: Local strain distribution in μCT based alveolar geometries (2010a) (in preparation)

    Google Scholar 

  • Rausch, S., Martin, C., Bornemann, P.B., Uhlig, S., Wall, W.A.: Material model of lung parenchyma based on living precision-cut lung slice testing. Journal of the Mechanical Behavior of Biomedical Materials (2010b) (submitted)

    Google Scholar 

  • Schittny, J.C., Mund, S.I., Stampanoni, M.: Evidence and structural mechanism for late lung alveolarization. American Journal of Physiology – Lung Cellular and Molecular Physiology 294(2), 246–254 (2008)

    Article  Google Scholar 

  • Suki, B., Habib, R.H., Jackson, A.C.: Wave propagation, input impedance, and wall mechanics of the calf trachea from 16 to 1,600 Hz. American Journal of Physiology 75, 2755–2766 (1993)

    Google Scholar 

  • Suki, B., Ito, S., Stamenovic, D., Lutchen, K.R., Ingenito, E.P.: Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. Journal of Applied Physiology 98(5), 1892–1899 (2005)

    Article  Google Scholar 

  • Tawhai, M.H., Pullan, A.J., Hunter, P.J.: Generation of an anatomically based three-dimensional model of the conducting airways. Annals of Biomedical Engineering 28(7), 793–802 (2000)

    Article  Google Scholar 

  • Toshima, M., Ohtani, Y., Ohtani, O.: Three-dimensional architecture of elastin and collagen fibre networks in the human and rat lung. Archives of Histology and Cytology 67(1), 31–40 (2004)

    Article  Google Scholar 

  • Tsushima, K., King, L.S., Aggarwal, N.R., De Gorordo, A., D’Alessio, F.R., Kubo, K.: Acute lung injury review. Internal Medicine 48, 621–630 (2009)

    Article  Google Scholar 

  • Vignon-Clementel, I., Figueroa, C., Jansen, K., Taylor, C.: Outflow boundary conditions for three-dimensional finite element modelling of blood flow and pressure in arteries. Computer Methods in Applied Mechanics and Engineering 195, 3776–3796 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Wall, W.A., Rabczuk, T.: Fluid structure interaction in lower airways of CT-based lung geometries. International Journal for Numerical Methods in Fluids 57, 653–675 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Wiechert, L., Rabczuk, T., Gee, M.W., Metzke, R., Wall, W.A.: Coupled problems in computational modelling of the respiratory system. In: High Performance Computing on Vector Systems 2007, pp. 145–166. Springer, Berlin (2007)

    Google Scholar 

  • Wiechert, L., Metzke, R., Wall, W.A.: Modelling the mechanical behaviour of lung tissue at the micro-level. Journal of Engineering Mechanics 135, 434–438 (2009)

    Article  Google Scholar 

  • Wiechert, L., Wall, W.A.: A nested dynamic multi-scale approach accounting for fine-scale multi-physics. Computer Methods in Applied Mechanics and Engineering 199, 1342–1351 (2010a)

    Article  MathSciNet  Google Scholar 

  • Wiechert, L., Wall, W.A.: Fluid-structure interaction including volume coupling of homogenized subdomains for treating artificial boundaries (2010b) (in preparation)

    Google Scholar 

  • Yuan, H., Ingenito, E.P., Suki, B.: Dynamic properties of lung parenchyma: mechanical contributions of fibre network and interstitial cells. Journal of Applied Physiology 83(5), 1420–1431 (1997)

    Google Scholar 

  • Zamir, M.: The Physics of Pulsatile Flow. Springer, New York (2000)

    Google Scholar 

  • Zhang, Z., Kleinstreuer, C.: Airflow structures and nano-particle deposition in a human upper airway model. Journal of Computational Physics 198, 178–210 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wiechert, L., Comerford, A., Rausch, S., Wall, W.A. (2011). Advanced Multi-scale Modelling of the Respiratory System. In: Klaas, M., Koch, E., Schröder, W. (eds) Fundamental Medical and Engineering Investigations on Protective Artificial Respiration. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20326-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20326-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20325-1

  • Online ISBN: 978-3-642-20326-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics