Skip to main content

Bifurcation braid monodromy of plane curves

  • Conference paper
  • First Online:
Book cover Complex and Differential Geometry

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 8))

  • 2146 Accesses

Abstract

We consider spaces of plane curves in the setting of algebraic geometry and of singularity theory. On one hand there are the complete linear systems, on the other we consider unfolding spaces of bivariate polynomials of Brieskorn-Pham type. For suitable open subspaces we can define the bifurcation braid monodromy taking values in the Zariski resp. Artin braid group. In both cases we give the generators of the image. These results are compared with the corresponding geometric monodromy. It takes values in the mapping class group of braided surfaces. Our final result gives a precise statement about the interdependence of the two monodromy maps. Our study concludes with some implication with regard to the unfaithfulness of the geometric monodromy ([W]) and the – yet unexploited – knotted geometric monodromy, which takes the ambient space into account.

Mathematics Subject Classification (2010) Primary 32S50. Secondary 14D05, 32S55, 57Q45.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Emil Artin: Theory of Braids, Ann. Math. (2) 48 (1947), 101–126

    Article  Google Scholar 

  2. Bessis, David: Zariski theorems and diagrams for braid groups, Invent. Math. 145 (2001), 487–507.

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Catanese, B. Wajnryb: The fundamental group of generic polynomials, Topology 30 (1991), 641–651.

    Article  MathSciNet  MATH  Google Scholar 

  4. Dolgachev, Igor, Libgober, Anatoly: On the fundamental group of the complement to a discriminant variety, in Algebraic geometry, Chicago 1980, LNM 862, Springer, Berlin-New York, 1981, 1–25.

    Google Scholar 

  5. Hirose, Susumu: Surfaces in the complex projective plane and their mapping class groups, Algebr. Geom. Topol. 5 (2005), 577–613.

    Article  MathSciNet  MATH  Google Scholar 

  6. Lönne, Michael: Bifurcation braid monodromy of elliptic surfaces, Topology 45 (2006), 785–806.

    Article  MathSciNet  MATH  Google Scholar 

  7. Lönne, Michael: Versal braid monodromy, C. R. Acad. Sci. Paris, Ser. I 346 (2008), 873–876.

    MATH  Google Scholar 

  8. Lönne, Michael: Fundamental groups of projective discriminant complements, Duke Math. J. 150 (2009), no. 2, 357–405.

    Article  MathSciNet  MATH  Google Scholar 

  9. Lönne, Michael: Braid Monodromy of some Brieskorn Pham Singularities, Internat. J. Math. 21 (2010), 1047–1070

    Article  MathSciNet  MATH  Google Scholar 

  10. Lönne, Michael: Geometric and algebraic significance of some Hurwitz stabilisers in Br n , Int. Electron. J. Algebra 8 (2010), 1–17.

    MathSciNet  Google Scholar 

  11. E. Looijenga: The complement of the bifurcation variety of a simple singularity, Invent. Math. 23 (1974), 105–116.

    Article  MathSciNet  MATH  Google Scholar 

  12. Perron, B., Vannier, J. P.: Groupe de monodromie géométrique des singularités simples, J. Math. Ann. 306 (1996), 231–245.

    Article  MathSciNet  MATH  Google Scholar 

  13. Rudolph, Lee: Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helv. 58 (1983), 1–37.

    Article  MathSciNet  MATH  Google Scholar 

  14. Wajnryb, Bronislaw: Artin groups and geometric monodromy, Invent. Math. 138 (1999), 563–571.

    Article  MathSciNet  MATH  Google Scholar 

  15. Zariski, Oscar: On the Poincaré group of rational plane curves, Am. J. Math. 58 (1936), 607–619.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lönne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lönne, M. (2011). Bifurcation braid monodromy of plane curves. In: Ebeling, W., Hulek, K., Smoczyk, K. (eds) Complex and Differential Geometry. Springer Proceedings in Mathematics, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20300-8_14

Download citation

Publish with us

Policies and ethics