Skip to main content

Attractive and Repulsive Casimir–Lifshitz Forces, QED Torques, and Applications to Nanomachines

  • Chapter
  • First Online:
Book cover Casimir Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 834))

Abstract

This chapter discusses recent developments in quantum electrodynamical (QED) phenomena, such as the Casimir effect, and their use in nanomechanics and nanotechnology in general. Casimir–Lifshitz forces arise from quantum fluctuations of vacuum or more generally from the zero-point energy of materials and their dependence on the boundary conditions of the electromagnetic fields. Because the latter can be tailored, this raises the interesting possibility of designing QED forces for specific applications. After a concise review of the field in the introduction, high precision measurements of the Casimir force using MicroElectroMechanical Systems (MEMS) are discussed. Applications to nonlinear oscillators are presented, along with a discussion of their use as nanoscale position sensors. Experiments that have demonstrated the role of the skin-depth effect in reducing the Casimir force are then presented. The dielectric response of materials enters in a non-intuitive way in the modification of the Casimir–Lifshitz force between dielectrics through the dielectric function at imaginary frequencies ε(iξ). The latter is illustrated in a dramatic way by experiments on materials that can be switched between a reflective and a transparent state (hydrogen switchable mirrors) and by a large reduction of the Casmir force between a gold sphere and a thick gold film, when the latter is replaced by an indium tin oxide (ITO) thick film. Changing the electromagnetic density of states by altering the shape of the interacting surfaces on a scale comparable to their separation is an effective method to tailor Casimir–Lifshitz forces. Measurements of the latter between a silicon surfaces nanostructured with deep trenches and a sphere metalized with thick gold have demonstrated the non-additivity of these forces and the ability to tailor them by suitable surface patterning. Experiments on the Casimir effect in fluids are discussed, including measurements of attractive and repulsive Casimir forces conducted between solids separated by a fluid with ε(iξ) intermediate between those of the solids over a large frequency range. Such repulsive forces can be used to achieve quantum levitation in a virtually friction-less environment, a phenomenon that could be exploited in innovative applications to nanomechanics. The last part of the chapter deals with the elusive QED torque between birefringent materials and efforts to observe it. We conclude by highlighting future important directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Milonni, P.W.: The Quantum Vacuum: An Introduction to Quantum Electrodynamics. Academic Press, San Diego (1993)

    Google Scholar 

  2. Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 60, 793–795 (1948)

    Google Scholar 

  3. Casimir, H.B.G.: Haphazard Reality. Half a Century of Science. Harper and Row, New York (1983)

    Google Scholar 

  4. Jaffe, R.L., Scardicchio, A.: Casimir effect and geometric optics. Phys. Rev. Lett. 92, 070402 (2004)

    ADS  Google Scholar 

  5. Scardicchio, A., Jaffe, R.L.: Casimir effects: an optical approach I. Foundations and examples. Nuc. Phys. B 704, 552–582 (2005)

    MathSciNet  ADS  MATH  Google Scholar 

  6. Sparnaay, M.J.: Measurements of attractive forces between flat plates. Physica 24, 751–764 (1958)

    ADS  Google Scholar 

  7. van Blokland, P.H.G.M., Overbeek, J.T.G.: van der Waals forces between objects covered with a chromium layer. J. Chem. Soc. Faraday Trans. 74, 2637–2651 (1978)

    Google Scholar 

  8. Lamoreaux, S.K.: Demonstration of the Casimir force in the 0.6 to 6 μm range. Phys. Rev. Lett. 78, 5–8 (1997)

    ADS  Google Scholar 

  9. Mohideen, U., Roy, A.: Precision Measurement of the Casimir force from 0.1 to 0.9 μm. Phys. Rev. Lett. 81, 4549–4552 (1998)

    ADS  Google Scholar 

  10. Roy, A., Lin, C.-Y., Mohideen, U.: Improved Precision Measurement of the Casimir force. Phys. Rev. D 60, 111101 (1999)

    ADS  Google Scholar 

  11. Harris, B.W., Chen, F., Mohideen, U.: Precision Measurement of the Casimir force using gold surfaces. Phys.Rev. A 62, 052109 (2000)

    ADS  Google Scholar 

  12. Ederth, T.: Template-stripped gold surfaces with 0.4-nm rms roughness suitable for force measurements: Application to the Casimir force in the 20–100 nm range. Phys. Rev. A 62, 062104 (2000)

    ADS  Google Scholar 

  13. Bressi, G., Carugno, G., Onofrio, R., Ruoso, G.: Measurement of the Casimir force between parallel metallic surfaces. Phys. Rev. Lett. 88, 041804 (2002)

    ADS  Google Scholar 

  14. Decca, R.S., Lopez, D., Fischbach, E., Krause, D.E.: Measurement of the Casimir Force between dissimilar metals. Phys. Rev. Lett. 91, 050402 (2003)

    ADS  Google Scholar 

  15. Decca, R.S., Lopez, D., Fischbach, E., Klimchitskaya, G.L., Krause, D.E., Mostepanenko, V.M.: Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions. Ann. Phys. 318, 37–80 (2005)

    ADS  MATH  Google Scholar 

  16. Chan, H.B., Aksyuk, V.A., Kleinman, R.N., Bishop, D.J., Capasso, F.: Quantum mechanical actuation of microelectromechanical systems by the Casimir force. Sci. 291, 1941–1944 (2001)

    ADS  Google Scholar 

  17. Derjaguin, B.V., Abrikosova, I.I.: Direct measurement of the molecular attraction of solid bodies. Statement of the problem and measurement of the force by using negative feedback. Sov Phys. JETP 3, 819–829 (1957)

    Google Scholar 

  18. Milonni, Peter.W., Shih, Mei.-Li.: Casimir Forces. Contemp. Phys. 33, 313–322 (1992)

    ADS  Google Scholar 

  19. Spruch, L.: Long-range (Casimir) interactions. Sci. 272, 1452–1455 (1996)

    ADS  Google Scholar 

  20. Parsegian, V.A.: Van der Waals forces: a Handbook for Biologists. Chemists, Engineers, and Physicists, Cambridge University Press, New York (2006)

    Google Scholar 

  21. Mostepanenko, V.M., Trunov, N.N.: The Casimir effect and its applications. Oxford University Press, Clarendon NY (1997)

    Google Scholar 

  22. Milton, K.A.: The Casimir effect: Physical manifestations of zero-point energy. World Scientific, singapore (2001)

    MATH  Google Scholar 

  23. Bordag, M., Mohideen, U., Mostepanenko, V.M.: New developments in the casimir effect. Phys. Rep. 353, 1–205 (2001)

    MathSciNet  ADS  MATH  Google Scholar 

  24. Martin, P.A., Buenzli, P.R.: The Casimir effect. Acta Phys. Polon. B 37, 2503–2559 (2006)

    ADS  Google Scholar 

  25. Lambrecht, A.: The Casimir effect: a force from nothing. Physics World 15, 29–32 (2002). (Sept. 2002)

    Google Scholar 

  26. Lamoreaux, S.K.: Resource Letter CF-1: Casimir Force. Am. J. Phys. 67, 850–861 (1999)

    ADS  Google Scholar 

  27. For an extensive bibliography on the Casimir effect see: http://www.cfa.harvard.edu/~babb/casimir-bib.html.

  28. Lifshitz, E.M.: The theory of molecular attractive forces between solids. Sov Phys. JETP 2, 73–83 (1956)

    MathSciNet  Google Scholar 

  29. Dzyaloshinskii, I.E., Lifshitz, E.M., Pitaevskii, L.P.: The general theory of van der Waals forces. Adv. Phys. 10, 165–209 (1961)

    MathSciNet  ADS  Google Scholar 

  30. Lambrecht, A., Reynaud, S.: Casimir force between metallic mirrors. Eur Phys. J. D 8, 309–318 (2000)

    ADS  Google Scholar 

  31. Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals. Phys. Rev. A 61, 062107 (2000)

    ADS  Google Scholar 

  32. Palik, E.D. (ed.): Handbook of Optical Constants of Solids. Academic, New York (1998)

    Google Scholar 

  33. Palik, E.D. (ed.): Handbook of Optical Constants of Solids: II. Academic, New York (1991)

    Google Scholar 

  34. Ordal, M.A., Bell, R.J., Alexander Jr., R.W., Long, L.L., Querry, M.R.: Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. 24, 4493–4499 (1985)

    ADS  Google Scholar 

  35. Maradudin, A.A., Mazur, P.: Effects of surface roughness on the van der Waals force between macroscopic bodies. Phys. Rev. B 22, 1677–1686 (1980)

    MathSciNet  ADS  Google Scholar 

  36. Neto, P.A.M., Lambrecht, A., Reynaud, S.: Roughness correction to the Casimir force: Beyond the proximity force approximation. Europhys. Lett. 69, 924–930 (2005)

    ADS  Google Scholar 

  37. Mahanty, J., Ninham, B.W.: Dispersion Forces. Academic, London (1976)

    Google Scholar 

  38. Israelachvili, J.N.: Intermolecular and Surface Forces. Academic, London (1991)

    Google Scholar 

  39. Henkel, C., Joulain, K., Mulet, J.Ph., Greffet, J.-J.: Coupled surface polaritons and the Casimir force. Phys. Rev. A 69, 023808 (2004)

    ADS  Google Scholar 

  40. Intravaia, F., Lambrecht, A.: Surface plasmon modes and the Casimir energy. Phys. Rev. Lett. 94, 110404 (2005)

    ADS  Google Scholar 

  41. Intravaia, F.: Effet Casimir et interaction entre plasmons de surface, PhD Thesis, Université Paris, (2005)

    Google Scholar 

  42. Lamoreaux, S.K.: Comment on Precision Measurement of the Casimir Force from 0.1 to 0.9 μm. Phys. Rev. Lett. 83, 3340 (1999)

    ADS  Google Scholar 

  43. Lamoreaux, S.K.: Calculation of the Casimir force between imperfectly conducting plates. Phys. Rev. A 59, 3149–3153 (1999)

    ADS  Google Scholar 

  44. Iannuzzi, D., Gelfand, I., Lisanti, M., Capasso, F.: New Challenges and directions in Casimir force experiments. Proceedings of the Sixth Workshop on Quantum Field Theory Under the Influence of External Conditions, pp. 11-16. Rinton, Paramus, NJ (2004)

    Google Scholar 

  45. Pirozhenko, I., Lambrecht, A., Svetovoy, V.B.: Sample dependence of the Casimir force. New J. Phys. 8, 238 (2006)

    ADS  Google Scholar 

  46. Buks, E., Roukes, M.L.: Metastability and the Casimir effect in micromechanical systems. Europhys. Lett. 54(2), 220–226 (2001)

    ADS  Google Scholar 

  47. Chan, H.B., Aksyuk, V.A., Kleinman, R.N., Bishop, D.J., Capasso, F.: Nonlinear micromechanical Casimir oscillator. Phys. Rev. Lett. 87, 211801 (2001)

    ADS  Google Scholar 

  48. Iannuzzi, D., Lisanti, M., Munday, J.N., Capasso, F.: The design of long range quantum electrodynamical forces and torques between macroscopic bodies. Solid State Commun. 135, 618–626 (2005)

    ADS  Google Scholar 

  49. de Man, S., Heeck, K., Wijngaarden, R.J., Iannuzzi, D.: Halving the Casimir force with conductive oxides. Phys. Rev. Lett. 103, 040402 (2009)

    Google Scholar 

  50. Lisanti, M., Iannuzzi, D., Capasso, F.: Observation of the skin-depth effect on the Casimir force between metallic surfaces. Proc. Natl. Acad. Sci. USA 102, 11989–11992 (2005)

    ADS  Google Scholar 

  51. Golestanian, R., Kardar, M.: ‘‘Mechanical response of vacuum. Phys. Rev. Lett. 78, 3421–3425 (1997)

    ADS  Google Scholar 

  52. Emig, T., Hanke, A., Kardar, M.: Probing the strong boundary shape dependence of the Casimir force. Phys. Rev. Lett. 87, 260402 (2001)

    ADS  Google Scholar 

  53. Chan, H.B., Bao, Y., Zou, J., Cirelli, R.A., Klemens, F., Mansfield, W.M., Pai, C.S.: Measurement of the Casimir force between a gold sphere and a silicon surface with nanoscale trench arrays. Phys. Rev. Lett. 101, 030401 (2008)

    ADS  Google Scholar 

  54. Parsegian, V.A., Weiss, G.H.: Dielectric anisotropy and the van der Waals interaction between bulk media. J. Adhes. 3, 259–267 (1972)

    Google Scholar 

  55. Barash, Y.: On the moment of van der Waals forces between anisotropic bodies. Izv. Vyssh. Uchebn. Zaved. Radiofiz. 12, 1637–1643 (1978)

    Google Scholar 

  56. Senturia, S.D.: Microsystem Design. Kluwer Academic, Dordrecht (2001)

    Google Scholar 

  57. Bishop, D.J., Giles, C.R., Austin, G.P.: The Lucent LambdaRouter MEMS: Technology of the future here today. IEEE Comun. Mag. 40, 75–79 (2002)

    Google Scholar 

  58. Aksyuk, V.A., Pardo, F., Carr, D., Greywall, D., Chan, H.B., Simon, M.E., Gasparyan, A., Shea, H., Lifton, V., Bolle, C., Arney, S., Frahm, R., Paczkowski, M., Haueis, M., Ryf, R., Neilson, D.T., Kim, J., Giles, C.R., Bishop, D.: Beam-steering micromirrors for large optical cross-connects. J. Lightw. Technol. 21, 634–642 (2003)

    ADS  Google Scholar 

  59. Serry, M., Walliser, D., Maclay, J.: The role of the Casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems (MEMS). J. Appl. Phys. 84, 2501–2506 (1998)

    ADS  Google Scholar 

  60. De Los Santos, H.J.: Nanoelectromechanical quantum circuits and systems. Proc. IEEE 91, 1907–1921 (2003)

    Google Scholar 

  61. Serry, F.M., Walliser, D., Maclay, G.J.: The anharmonic Casimir oscillator (ACO)-the Casimir effect in a model microelectromechanical system. J. Microelectromech. Syst. 4, 193–205 (1995)

    Google Scholar 

  62. Landau, L.D., Lifshitz, E.M.: Mechanics. Pergamon, New York (1976)

    Google Scholar 

  63. Büscher, R., Emig, T.: Nonperturbative approach to Casimir interactions in periodic geometries. Phys. Rev. A 69, 062101 (2004)

    ADS  Google Scholar 

  64. Klimchitskaya, G.L., Zanette, S.I., Caride, A.O.: Lateral projection as a possible explanation of the nontrivial boundary dependence of the Casimir force. Phys. Rev. A 63, 014101 (2000)

    ADS  Google Scholar 

  65. Chen, F., Klimchitskaya, G.L., Mostepanenko, V.M., Mohideen, U.: Demonstration of the difference in the Casimir force for samples with different charge-carrier densities. Phys. Rev. Lett. 97, 170402 (2006)

    ADS  Google Scholar 

  66. Iannuzzi, D., Lisanti, M., Capasso, F.: Effect of hydrogen-switchable mirrors on the Casimir force. Proc. Natl. Acad. Sci. USA 101, 4019–4023 (2004)

    ADS  Google Scholar 

  67. Chu, W.K., Mayer, J.W., Nicolet, M.-A.: Backscattering Spectrometry. Academic Press, New York (1978)

    Google Scholar 

  68. Iannuzzi, D., Lisanti, M., Munday, J.N., Capasso, F.: Quantum fluctuations in the presence of thin metallic films and anisotropic materials. J. Phys. A: Math. Gen. 39, 6445–6454 (2006)

    MathSciNet  ADS  Google Scholar 

  69. Hough, D.B., White, L.R.: The Calcualtion of Hamaker constants from Lifshitz theory with applications to wetting phenomena. Adv. Colloid Interface Sci. 14, 3–41 (1980)

    Google Scholar 

  70. Huiberts, J.N., Griessen, R., Rector, J.H., Wijngaarden, R.J., Dekker, J.P., de Groot, D.G., Koeman, N.J.: Yttrium and lanthanum hydride films with switchable optical properties. Nat. 380, 231–234 (1996)

    ADS  Google Scholar 

  71. Richardson, T.J., Slack, J.L., Armitage, R.D., Kostecki, R., Farangis, B., Rubin, M.D.: Switchable mirrors based on nickel–magnesium films. Appl. Phys. Lett. 78, 3047–3049 (2001)

    ADS  Google Scholar 

  72. de Man, S., Iannuzzi, D.: On the use of hydrogen switchable mirrors in Casimir force experiments. New J. Phys. 8, 235 (2006)

    Google Scholar 

  73. de Man, S., Heeck, K., Wijngaarden, R.J., Iannuzzi, D.: Halving the Casimir force with conductive oxides. Phys. Rev. Lett. 103, 040402 (2009)

    Google Scholar 

  74. Munday, J.N., Capasso, F.: Precision Measurement of the Casimir–Lifshitz force in a fluid. Phys. Rev. A 75, 060102 (2007)

    ADS  Google Scholar 

  75. Munday, J.N., Capasso, F., Parsegian, V.A., Bezrukov, S.M.: Measurements of the Casimir–Lifshitz force in fluids: The effect of electrostatic forces and Debye the Casimir–Lifshitz force in fluids: The effect of electrostatic forces and Debye screening. Phys. Rev. A 78, 032109 (2008)

    ADS  Google Scholar 

  76. Munday, J.N., Parsegian, V.A., Capasso, F.: Measured long-range repulsive Casimir–Lifshitz forces. Nat. 457, 170–173 (2009)

    ADS  Google Scholar 

  77. Boyer, T.H.: ‘Quantum electromagnetic zero-point energy of a conducting spherical shell and the Casimir model for a charged particle. Phys. Rev. 174, 1764–1776 (1968)

    ADS  Google Scholar 

  78. Ambjorn, J., Wolfram, S.: Properties of the vacuum. I. mechanical and thermodynamic. Ann. Phys. 147, 1–32 (1983)

    ADS  Google Scholar 

  79. Maclay, G.J.: Analysis of zero-point electromagnetic energy and Casimir forces in conducting rectangular cavities. Phys. Rev. A 61, 052110 (2000)

    ADS  Google Scholar 

  80. Graham, N., Jaffe, R.L., Khemani, V., Quandt, M., Schroeder, O., Weigel, H.: The Dirichlet Casimir Problem. Nucl.Phys B 677, 379–404 (2004)

    ADS  MATH  Google Scholar 

  81. Hertzberg, M.P., Jaffe, R.L., Kardar, M., Scardicchio, A.: Attractive Casimir forces in a closed geometry. Phys. Rev. Lett. 95, 250402 (2005)

    MathSciNet  ADS  Google Scholar 

  82. Tartaglino, U., Zykova-Timan, T., Ercolessi, F., Tosatti, E.: Melting and nonmelting of solid surfaces and nanosystems. Phys. Repts. 411, 291–321 (2005)

    ADS  Google Scholar 

  83. Sabisky, E.S., Anderson, C.H.: Verification of the Lifshitz theory of the van der Waals potential using liquid-helium films. Phys. Rev. A 7, 790–806 (1973)

    ADS  Google Scholar 

  84. Munday, J.N., Federico, C.: Repulsive Casimir and van der Waals forces: From measurements to future technologies. Inter. Journ. Mod. Phys. A 25, 2252–2259 (2010)

    ADS  Google Scholar 

  85. Hutter, J.L., Bechhoefer, J.: Manipulation of van der Waals forces to improve image resolution in atomic-force microscopy. J. Appl. Phys. 73, 4123 (1993)

    ADS  Google Scholar 

  86. Milling, A., Mulvaney, P., Larson, I.: Direct measurement of repulsive van der Waals interactions using an atomic force microscope. J. Col. Inter. Sci. 180, 460 (1996)

    Google Scholar 

  87. Meurk, A., Luckham, P.F., Bergstrom, L.: Direct measurement of repulsive and attractive van der Waals forces between inorganic materials. Langmuir 13, 3896 (1997)

    Google Scholar 

  88. Lee, S., Sigmund, W.M.: Repulsive van der Waals forces for silica and alumina. J. Col. Inter. Sci. 243, 365 (2001)

    Google Scholar 

  89. Lee, S.W., Sigmund, W.M.: AFM study of repulsive van der Waals forces between teflon AF thin film and silica or alumina. Col. Surf. A 204, 43 (2002)

    Google Scholar 

  90. Feiler, A., Plunkett, M.A., Rutland, M.W.: Superlubricity using repulsive van der Waals forces. Langmuir 24, 2274 (2008)

    Google Scholar 

  91. Sader, J.E., et al.: Method for the calibration of atomic force microscope cantilevers. Rev. Sci. Instr 66, 3789 (1995)

    ADS  Google Scholar 

  92. Cleveland, J.P., et al.: A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev. Sci. Instr. 64, 403 (1993)

    ADS  Google Scholar 

  93. Gibson, C.T., Watson, G.S., Myhra, S.: Scanning force microscopy—calibrative procedures for best practice. Scanning 19, 564 (1997)

    Google Scholar 

  94. Craig, V.S.J., Neto, C.: In Situ calibration of colloid probe cantilevers in force microscopy: hydrodynamic drag on a sphere approaching a wall. Langmuir 17, 6018 (2001)

    Google Scholar 

  95. Iannuzzi, D., Munday, J., Capasso, F.: Ultra-low static friction configuration. Patent submitted, (2005)

    Google Scholar 

  96. Ducker, W.A., Senden, T.J., Pashley, R.M.: Direct force measurements of colloidal forces using an atomic force microscope. Nat. 353, 239–241 (1991)

    ADS  Google Scholar 

  97. van Enk, S.J.: Casimir torque between dielectrics. Phys. Rev. A 52, 2569–2575 (1995)

    ADS  Google Scholar 

  98. Kenneth, O., Nussinov, S.: New polarized version of the Casimir effect is measurable. Phys. Rev. D 63, 121701 (2001)

    ADS  Google Scholar 

  99. Shao, S.C.G., Tong, A.H., Luo, J.: Casimir torque between two birefringent plates. Phys. Rev. A 72, 022102 (2005)

    ADS  Google Scholar 

  100. Torres-Guzmán, J.C., Mochán, W.L.: Casimir torque. J. Phys. A: Math. Gen. 39, 6791–6798 (2006)

    ADS  Google Scholar 

  101. Rodrigues, R.B., Neto, P.A.M., Lambrecht, A., Reynaud, S.: Vacuum-induced torque between corrugated metallic plates. Europhys. Lett. 76, 822 (2006)

    ADS  Google Scholar 

  102. Munday, J.N., Iannuzzi, D., Barash, Y., Capasso, F.: Torque on birefringent plates induced by quantum fluctuations. Phys. Rev. A 71, 042102 (2005)

    ADS  Google Scholar 

  103. Munday, J.N., Iannuzzi, D., Capasso, F.: Quantum electrodynamical torques in the presence of brownian motion. New J. Phys. 8, 244 (2006)

    ADS  Google Scholar 

  104. Prieve, D.C., Frej, N.A.: Total internal reflection microscopy: a quantitative tool for the measurement of colloidal forces. Langmuir 6, 396–403 (1990)

    Google Scholar 

  105. Prieve, D.C.: Measurement of colloidal forces with TIRM. Adv. Colloid Interface Sci. 82, 93–125 (1999)

    Google Scholar 

  106. Crocker, J.C., Grier, D.G.: Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996)

    Google Scholar 

  107. Jones, R.C.: New calculus for the treatment of optical systems. I. Description and discussion of the calculus. J. Opt. A. 31, 488–493 (1941)

    Google Scholar 

  108. Fowles, G.R.: Introduction to Modern Optics. Dover Publishing, New York (1968)

    Google Scholar 

  109. Levy, M., Osgood, R.M., Liu, R., Cross, L.E., Cargill III, G.S., Kumar, A., Bakhru, H.: Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett. 73, 2293–2295 (1998)

    ADS  Google Scholar 

  110. Bimonte, G., Calloni, E., Esposito, G., Rosa, L.: Casimir energy and the superconducting phase transition. J. Phys. A: Math. Gen. 39, 6161–6171 (2006)

    MathSciNet  ADS  MATH  Google Scholar 

  111. Torricelli, G., van Zwol, P.J., Shpak, O., Binns, C., Palasantzas, G., Kooi, B.J., Svetovoy, V.B., Wuttig, M.: Switching Casimir forces with phase change materials. Phys. Rev. A 82, 010101(R) (2010)

    ADS  Google Scholar 

  112. Soyka, F., et al.: Critical Casimir forces in colloidal suspensions on chemically patterned surfaces. Phys. Rev. Lett. 101, 208301 (2008)

    ADS  Google Scholar 

  113. Sheehan, D.P.: Casimir chemistry. The J. Chem. Phys. 131, 104706 (2009)

    ADS  Google Scholar 

  114. Cho, Y.K., et al.: Self-assembling colloidal-scale devices: selecting and using shortrange surface forces between conductive solids. Adv. Mater. 17, 379 (2007)

    Google Scholar 

  115. Bishop, K.J.M., et al.: Nanoscale forces and their uses in self-assembly. Small 5, 1600 (2009)

    Google Scholar 

  116. Levitov, L.S.: Van Der Waals’ friction. Europhys. Lett. 8, 499–504 (1989)

    ADS  Google Scholar 

  117. Levitov L.S.: private communication

    Google Scholar 

  118. Pendry, J.B.: Shearing the vacuum-quantum friction. J. Phys.: Condens. Matter 9, 10301–10320 (1997)

    ADS  Google Scholar 

  119. Kardar, M., Golestanian, R.: The friction of vacuum, and other fluctuation-induced forces. Rev Mod. Phys. 71, 1233–1245 (1999)

    ADS  Google Scholar 

  120. Lambrecht, A., Jaekel, M., Reynaud, S.: Motion induced radiation from a vibrating cavity. Phys. Rev. Lett. 77, 615–618 (1996)

    ADS  Google Scholar 

  121. Schwinger, J.: Casimir light: A glimpse. Proc. Natl. Acad. Sci. USA 90, 958–959 (1993)

    MathSciNet  ADS  Google Scholar 

  122. Huang, X.M.H., Feng, X.L., Zorman, C.A., Mehregany, M., Roukes, M.L.: VHF, UHF and microwave frequency nanomechanical resonators. New J. Phys. 7, 247 (2005)

    ADS  Google Scholar 

  123. Belyanin, A., Kocharovsky, V., Kocharovsky, V., Capasso, F.: Coherent radiation from neutral molecules moving above a grating. Phys. Rev. Lett. 88, 053602 (2002)

    ADS  Google Scholar 

  124. Rodriguez, A.W., Capasso, F., Johnson, S.G.: Nat. Photonics 5 211 (2011)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank D. Iannuzzi, M Lisanti, L Spector, M B Romanowsky, N Geisse, K Parker, R M Osgood, R Roth, H Stone, Y Barash, V A Aksyuk, R N Kleinman, D J Bishop for their collaborations and R Guerra, R Onofrio, M Kardar, R L Jaffe, S G Johnson, J D Joannopoulos, L Levitov, V Parsegian, J. N. Israelachvili, E Tosatti, V. Pogrovski, M Scully, P W Milonni, W. Kohn, M. Cohen, A Lambrecht, F. Intravaia, S. Reynaud for helpful suggestions and discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Capasso, F., Munday, J.N. (2011). Attractive and Repulsive Casimir–Lifshitz Forces, QED Torques, and Applications to Nanomachines. In: Dalvit, D., Milonni, P., Roberts, D., da Rosa, F. (eds) Casimir Physics. Lecture Notes in Physics, vol 834. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20288-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20288-9_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20287-2

  • Online ISBN: 978-3-642-20288-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics