Skip to main content

Progress in Experimental Measurements of the Surface–Surface Casimir Force: Electrostatic Calibrations and Limitations to Accuracy

  • Chapter
  • First Online:
Casimir Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 834))

Abstract

Several new experiments have extended studies of the Casimir force into new and interesting regimes. This recent work will be briefly reviewed. With this recent progress, new issues with background electrostatic effects have been uncovered. The myriad of problems associated with both patch potentials and electrostatic calibrations are discussed and the remaining open questions are brought forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: The Casimir force between real materials: Experiment and theory. Rev. Mod. Phys. 81, 1827 (2009)

    Article  ADS  Google Scholar 

  2. Lamoreaux, S.K.: Demonstration of the Casimir force in the 0.6 to 6 \(\upmu {\rm m}\) range. Phys. Rev. Lett. 78, 5 (1997)

    Article  ADS  Google Scholar 

  3. Hargreaves, C.M.: Corrections to the retarded dispersion force between metal bodies. Proc Kon. Ned. Akad. Wetensh. 68B, 231 (1965)

    Google Scholar 

  4. Schwinger, J., De Raad Jr., L.L., Milton, K.A: Casimir effect in dielectrics. Ann. Phys. (New York) 115, 1 (1978)

    Article  ADS  Google Scholar 

  5. Lamoreaux, S.K.: Calculation of the Casimir force between imperfectly conducting plates. Phys. Rev. A 59, R3149 (1999)

    Article  ADS  Google Scholar 

  6. Lamoreaux, S.K.: Erratum: Demonstration of the Casimir force in the 0.6 to 6 \(\upmu {\rm m}\) range. Phys. Rev. Lett. 81, 5475 (1998)

    Article  ADS  Google Scholar 

  7. Lambrecht, A., Reynaud, S.: Casimir force between metallic mirrors. Euro. Phys. J. D 8, 309 (2000)

    Article  ADS  Google Scholar 

  8. Lambrecht, A., Reynaud, S., Lamoreaux, S.K.: Comment on Demonstration of the Casimir force in the 0.6 to 6 \(\upmu {\rm m}\) range. Phys. Rev. Lett. 84, 5672 (2000), and references therein

    Google Scholar 

  9. Boström, M., Sernelius, B.: Thermal effects on the Casimir force in the 0.1–5 \(\upmu {\rm m}\) range. Phys Rev Lett 84, 4757 (2000)

    Article  ADS  Google Scholar 

  10. Boström, M., Sernelius, B.E: Entropy of the Casimir effect between real metal plates. Physica A 339, 53 (2004)

    Article  ADS  Google Scholar 

  11. Lamoreaux, S.K., Buttler, W.T.: Thermal noise limitations to force measurements with torsion pendulums: Applications to the measurement of the Casimir force and its thermal correction. Phys. Rev. E 71, 036109 (2005)

    Article  ADS  Google Scholar 

  12. Milonni, P.W.: The Quantum Vacuum. Academic Press, San Diego (1994)

    Google Scholar 

  13. Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. Kon. Ned. Akad. Wetenschap 51, 793 (1948)

    Google Scholar 

  14. Lifshitz, E.M.: The theory of molecular attractive forces between solids. Sov. Phys. JETP 2, 73 (1956)

    MathSciNet  Google Scholar 

  15. See, e.g., Mostepanenko, V.: Theory, and the Casimir effect. J. Phys. Conf. Ser. 161, 012003 (2009)

    Google Scholar 

  16. Jackson, J.D.: Classical Electrodynamics, 2nd ed. Wiley, New York (1975). See Sect. 7.5

    Google Scholar 

  17. Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon, Oxford (1960)

    MATH  Google Scholar 

  18. Svetovoy, V.B., van Zwol, P.J., Palasantzas, G., Th.M.De Hosson, J.: Optical properties of gold films and the Casimir force. Phys.Rev. B 77, 035439 (2008)

    Article  ADS  Google Scholar 

  19. van Zwol, P.J., Svetovoy, V.B., Palasantzas, G.: Distance upon contact: Determination from roughness profile. Phys. Rev. B 80, 235401 (2009)

    Article  ADS  Google Scholar 

  20. Fischbach, E., Sudarsky, D., Szafer, A., Talmadge, C., Aronson, S.H.: Reanalysis of the Eotvos experiment. Phys. Rev. Lett. 56, 3 (1986)

    Article  ADS  Google Scholar 

  21. Mostepanenko, V.M., Yu. Sokolov, I.: Laboratory tests for the constituents of dark matter. Astronoische Nachrichten 311, 197 (1990)

    Article  ADS  Google Scholar 

  22. Long, J.C., Chan, H.W., Price, J.C.: Experimental status of gravitational-strength forces in the sub-centimeter regime. Nucl. Phys. B 539, 23 (1999)

    Article  ADS  Google Scholar 

  23. Klimchitskaya, G.L., Bezerrade Mello, E.R., Mostepanenko, V.M.: Constraints on the parameters of degree-type hypothetical forces following from the new Casimir force measurement. Phys. Lett. A 236, 280 (1997)

    Article  ADS  Google Scholar 

  24. Decca, R.S., Lopez, D., Fischbach, E., Klimchitskaya, G.L., Kraus, D..E, Mostepanenko, V.M.: Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates. Phys. Rev. D 75, 77101 (2007)

    Article  ADS  Google Scholar 

  25. Dalvit, D.A.R., Onofrio, R.: On the use of the proximity force approximation for deriving limits to short-range gravitational-like interactions from sphere-plane Casimir force experiments. Phys. Rev. D 80, 064025 (2009)

    Article  ADS  Google Scholar 

  26. Decca, R.S., Fischbach, E., Klimchitskaya, G.L., Krause, D.E., Lopez, D., Mostepanenko, D.V.M.: Comment on Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry. Phys. Rev. D 79, 124021 (2009)

    Article  ADS  Google Scholar 

  27. Decca, R.S., Lopez, D., Chan, H.B., Fischbach, E., Krause, D.E., Jamell, C.R.: Constraining new forces in the Casimir regime using the isoelectronic technique. Phys. Rev. Lett. 94, 240401 (2005)**

    Article  ADS  Google Scholar 

  28. Rosa, F.S.S., Dalvit, D.A.R., Milonni, P.W.: Casimir interactions for anisotropic magnetodielectric metamaterials. Phys. Rev. A 78, 032117 (2008)

    Article  ADS  Google Scholar 

  29. Buks, E., Roukes, M.L.: Metastability and the Casimir effect in micromechanical systems. Europhys. Lett. 54, 220 (2001)

    Article  ADS  Google Scholar 

  30. de Man, S., Heeck, K., Wijngaarden, R.J., Iannuzzi, D.: Halving the Casimir force with conductive oxides. Phys. Rev. Lett. 103, 040402 (2009)

    Article  Google Scholar 

  31. Boyer, T.H.: Quantum electromagnetic zero-point energy of a conducting spherical shell and the Casimir model for a charged particle. Phys. Rev. 174, 1764 (1968)

    Article  ADS  Google Scholar 

  32. Iannuzzi, D., Lisanti, M., Capasso, F.: Effect of hydrogen-switchable mirrors on the Casimir force. PNAS 101, 4019 (2004)

    Article  ADS  Google Scholar 

  33. de Man, S., Iannuzzi, D.: On the use of hydrogen switchable mirrors in Casimir force experiments. New J. Phys. 8, 235 (2006)

    Google Scholar 

  34. Chan, H.B., Bao, Y., Zou, J., Cirelli, R.A., Klemens, F., Mansfield, W.M., Pai, C.S.: Measurement of the Casimir force between a gold sphere and a silicon surface with nanoscale trench arrays. Phys. Rev. Lett. 101, 03040 (2008)

    Article  Google Scholar 

  35. Büscher, R., Emig, T.: Nonperturbative approach to Casimir interactions in periodic geometries. Phys. Rev. A 69, 062101 (2004)

    Article  ADS  Google Scholar 

  36. Munday, J.N., Capasso, F.: Precision measurement of the Casimir–Lifshitz force in a fluid. Phys. Rev. A 75, 060102 (2007)

    Article  ADS  Google Scholar 

  37. Munday, J.N., Capasso, J.N.F., Parsegian, V.A., Bezrukov, S.M.: Measurements of the Casimir–Lifshitz force in fluids: The effect of electrostatic forces and Debye screening. Phys. Rev. A 78, 032109 (2008)

    Article  ADS  Google Scholar 

  38. Munday, J.N., Capasso, F., Parsegian, V.A.: Measured long-range repulsive Casimir–Lifshitz forces. Nature 457, 170 (2008)

    Article  ADS  Google Scholar 

  39. Derjaguin, B.V., Abrikosova, I.I.: Direct measurement of the molecular attraction of solid bodies. 1. Statement of the problem and method of measuring forces by using negative feedback. Sov. Phys. JETP 3, 819 (1957)

    Google Scholar 

  40. Blocki, J., Randrup, J., Swiatecki, W.J., Tsang, C.F.: Proximity forces. Annals Phys. 105, 427 (1977)

    Article  ADS  Google Scholar 

  41. Blocki, J., Swiatecki, W.J.: Generalization of the proximity force theorem. Annals Phys. 132, 53 (1981)

    Article  ADS  Google Scholar 

  42. Kim, W.J., Brown-Hayes, M., Dalvit, D.A.R., Brownell, J.H., Onofrio, R.: Reply to ‘Comment on Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry’. Phys. Rev. A 79, 026102 (2009)

    Article  ADS  Google Scholar 

  43. Kim, W.J., Brown-Hayes, M., Dalvit, D.A.R., Brownell, J.H., Onofrio, R.: Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry. Phys. Rev. A 78, 020101 (2008)

    Article  ADS  Google Scholar 

  44. Maia Neto, P.A., Lambrecht, A., Reynaud, S.: Casimir effect with rough metallic mirrors. Phys. Rev. A 72, 012115 (2005)

    Article  ADS  Google Scholar 

  45. Kim, W.J., Sushkov, A.O., Dalvit, D.A.R., Lamoreaux, S.K.: Measurement of the short-range attractive force between Ge plates using a torsion balance. Phy. Rev. Lett. 103, 060401 (2009)

    Article  ADS  Google Scholar 

  46. de Man, S., Heeck, K., Iannuzzi, D.: No anomalous scaling in electrostatic calibrations for Casimir force measurements. Phys. Rev. A 79, 024102 (2009)

    Article  ADS  Google Scholar 

  47. Spitsyn, A.I., Vanstan, V.M.: Potential gradient along semiconductor-surface projections in an external electric field. Radiophysics and Quantum Electronics 36, 752 (1993)

    Article  ADS  Google Scholar 

  48. Bardeen, J.: Surface states and rectification at metal semi-conductor contact. Phys. Rev. 71, 717 (1947)

    Article  ADS  Google Scholar 

  49. Dalvit, D.A.R, Lamoreaux, S.K.: Computation of Casimir forces for dielectrics or intrinsic semiconductors based on the Boltzmann transport equation. J. Phys.: Conference Series 161, 012009 (2009)

    Article  ADS  Google Scholar 

  50. Dalvit, D.A.R, Lamoreaux, S.K.: Contribution of drifting carriers to the Casimir–Lifshitz and Casimir–Polder interactions with semiconductor materials. Phys. Rev. Lett. 101, 163203 (2008)

    Article  ADS  Google Scholar 

  51. Lamoreaux, S.K.: Electrostatic background forces due to varying contact potentials in Casimir experiments. arXiv:0808.0885

    Google Scholar 

  52. Robertson, N.A.: Kelvin Probe Measurements of the Patch Effect Report LIGO-G070481-00-R (available at http://www.ligo.caltech.edu/docs/G/G070481-00.pdf)

  53. Speake, C.C., Trenkel, C.: Forces between conducting surfaces due to spatial variations of surface potential. Phys. Rev. Lett. 90, 160403 (2003)

    Article  ADS  Google Scholar 

  54. Stein, E., Weiss, G.: Introduction to Fourier Transforms on Euclidean Spaces. Princeton University Press, Princeton (1971)

    Google Scholar 

  55. Kim, W.J., Sushkov, A.O., Dalvit,, D.A.R., Lamoreaux,, S.K.: Measurement of the short-range attractive force between Ge plates using a torsion balance. Phy. Rev. Lett. 103, 060401 (2009)

    Article  ADS  Google Scholar 

  56. Kim, W.J., Sushkov, A.O, Dalvit, D.A.R, Lamoreaux, S.K.: Surface contact potential patches and Casimir force measurements. Phys. Rev. A 81, 022505 (2010)

    Article  ADS  Google Scholar 

  57. Nonnemacher , N., OBoyle , M.P., Wickramasinghe, H.K.: Kelvin Probe Microscopy. Appl. Phys. Lett. 58, 2921 (1991)

    Article  ADS  Google Scholar 

  58. Jacobs, H.O., Leuchtmann, P., Homan, O.J., Stemmer, A.: Resolution and contrast in Kelvin probe force microscopy. J. Appl. Phys. 84, 1168 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank my colleagues and collaborators W.-J. Kim, A.O. Sushkov, H.X. Tang, and D.A.R. Dalvit for many fruitful discussions that led to the understanding of our Ge experiment, and to deeper understanding of the Casimir force in general. I also thank R. Onofrio and S. de Man for a number of discussions over the last few years that were helpful in clarifying a number of issues. SKL was supported by the DARPA/MTO Casimir Effect Enhancement project under SPAWAR contract number N66001-09-1-2071.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve K. Lamoreaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lamoreaux, S.K. (2011). Progress in Experimental Measurements of the Surface–Surface Casimir Force: Electrostatic Calibrations and Limitations to Accuracy. In: Dalvit, D., Milonni, P., Roberts, D., da Rosa, F. (eds) Casimir Physics. Lecture Notes in Physics, vol 834. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20288-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20288-9_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20287-2

  • Online ISBN: 978-3-642-20288-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics