Skip to main content

Geometry and Material Effects in Casimir Physics-Scattering Theory

  • Chapter
  • First Online:
Casimir Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 834))

Abstract

We give a comprehensive presentation of methods for calculating the Casimir force to arbitrary accuracy, for any number of objects, arbitrary shapes, susceptibility functions, and separations. The technique is applicable to objects immersed in media other than vacuum, to nonzero temperatures, and to spatial arrangements in which one object is enclosed in another. Our method combines each object’s classical electromagnetic scattering amplitude with universal translation matrices, which convert between the bases used to calculate scattering for each object, but are otherwise independent of the details of the individual objects. This approach, which combines methods of statistical physics and scattering theory, is well suited to analyze many diverse phenomena. We illustrate its power and versatility by a number of examples, which show how the interplay of geometry and material properties helps to understand and control Casimir forces. We also examine whether electrodynamic Casimir forces can lead to stable levitation. Neglecting permeabilities, we prove that any equilibrium position of objects subject to such forces is unstable if the permittivities of all objects are higher or lower than that of the enveloping medium; the former being the generic case for ordinary materials in vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Because of this relationship, these scattering amplitudes are also referred to as elements of the T-matrix. In standard conventions, however, the T-matrix differs from the matrix elements of the \({\mathbb{T}}\)-operator by a basis-dependent constant, so we will use the term “scattering amplitude” to avoid confusion.

  2. 2.

    Alternatively, we can set up asymptotically incoming and outgoing waves on the outside and regular waves inside. The amplitudes of the outgoing waves are then given by the S-matrix, which is related to the scattering amplitude \({\fancyscript{F}}\) by \({\fancyscript{F}}=( S- I)/2.\) Although these two matrices carry equivalent information, the scattering amplitude will be more convenient for our calculation.

  3. 3.

    The sequence of two changes of variables is known as Hubbard-Stratonovich transformation in condensed matter physics.

  4. 4.

    \({\mathbb{G}}_M\) satisfies \(\left({\varvec\nabla} \times\mu_M^{-1}(ic\kappa){\varvec\nabla} \times+\varepsilon_M(ic\kappa)\kappa^2\right){\mathbb{G}}_M(ic\kappa,{\mathbf x},{\mathbf x}^{\prime})=\delta({\mathbf x}-{\mathbf x}^{\prime}){\mathbb{I}},\) and is related to \(G_M,\) the Green’s function of the imaginary frequency Helmholtz equation, by \({\mathbb{G}}_M(ic\kappa,{\mathbf x},{\mathbf x}^{\prime}) = \mu_M(ic\kappa)\left({\mathbb{I}} + (n_M \kappa)^{-2} {\varvec\nabla}\otimes{\varvec\nabla}^{\prime}\right) G_M(icn_M\kappa,{\mathbf x},{\mathbf x}^{\prime})\).~Here, \(n_M(ic\kappa)=\sqrt{\varepsilon_M(ic\kappa) \mu_M(ic\kappa)}\) is the index of refraction of the medium, whose argument is suppressed to simplify the presentation. Thus \({\mathbb{G}}_M,\) in contrast to \({\mathbb{G}}_0,\) takes into account the permittivity and permeability of the medium when they are different from one.

  5. 5.

    To obtain the free energy at finite temperature, in place of the ground state energy \({\fancyscript{E}},\) \(\int {\frac{d\kappa}{2\pi}}\) is replaced by the sum \({\frac{kT}{\hbar c}}\sum^{\prime}_{\kappa_n\geq 0}\) over Matsubara ‘wavenumbers’ \(\kappa_n = 2\pi n k T/\hbar c\) with the \(\kappa_0=0\) mode weighted by \(1/2\).

  6. 6.

    In practice, \({\mathbb{T}}_A\) and \({\mathbb{T}}_R\) suffice to have the same sign over the frequencies, which contribute most to the integral (or the sum) in (5.43)

  7. 7.

    The first curl in the operator \({\mathbb{V}}_J\) results from an integration by parts. It is understood that it acts on the wave function multiplying \({\mathbb{V}}_J\) from the left.

References

  1. Ashkin, A.: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970)

    Article  ADS  Google Scholar 

  2. Ashkin, A., Gordon, J.P.: Stability of radiation-pressure particle traps: an optical Earnshaw theorem. Opt. Lett. 8, 511–513 (1983)

    Article  ADS  Google Scholar 

  3. Bachas, C.P.: Comment on the sign of the Casimir force. J. Phys. A: Math. Theor. 40, 9089–9096 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Balian, R., Duplantier, B.: Electromagnetic waves near perfect conductors. II. Casimir effect. Ann. Phys., NY 104, 300–335 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  5. Balian, R., Duplantier, B.: Electromagnetic waves near perfect conductors. I. Multiple scattering expansions. Distribution of modes. Ann. Phys., NY 112, 165–208 (1978)

    Article  MathSciNet  Google Scholar 

  6. Birman, M.S., Krein, M.G.: On the theory of wave operators and scattering operators. Sov. Math.-Dokl. 3, 740–744 (1962)

    MATH  Google Scholar 

  7. Bordag, M., Robaschik, D., Wieczorek, E.: Quantum field theoretic treatment of the Casimir effect. Ann. Phys., NY 165, 192–213 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  8. Braunbek, W.: Freies Schweben diamagnetischer Körper im magnetfeld. Z. Phys. 112, 764–769 (1939)

    Article  ADS  MATH  Google Scholar 

  9. Braunbek, W.: Freischwebende Körper im elektrischen und magnetischen Feld. Z. Phys. 112, 753–763 (1939)

    Article  ADS  MATH  Google Scholar 

  10. Bulgac, A., Magierski, P., Wirzba, A.: Scalar Casimir effect between Dirichlet spheres or a plate and a sphere. Phys. Rev. D 73, 025007 (2006)

    Article  ADS  Google Scholar 

  11. Bulgac, A., Wirzba, A.: Casimir Interaction among objects immersed in a fermionic environment. Phys. Rev. Lett. 87, 120404 (2001)

    Article  ADS  Google Scholar 

  12. Büscher, R., Emig, T.: Geometry and spectrum of Casimir forces. Phys. Rev. Lett. 94, 133901 (2005)

    Article  ADS  Google Scholar 

  13. Capasso, F., Munday, J.N., Iannuzzi, D., Chan, H.B.: Casimir forces and quantum electrodynamical torques: Physics and Nanomechanics. IEEE J. Sel. Top. Quant. 13, 400–414 (2007)

    Article  Google Scholar 

  14. Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793–795 (1948)

    MATH  Google Scholar 

  15. Casimir, H.B.G., Polder, D.: The Influence of retardation on the London-van der Waals forces. Phys. Rev. 73, 360–372 (1948)

    Article  ADS  MATH  Google Scholar 

  16. Chan, H.B., Aksyuk, V.A., Kleiman, R.N., Bishop, D.J., Capasso, F.: Quantum mechanical actuation of microelectromechanical systems by the Casimir force. Science 291, 1941–1944 (2001)

    Article  ADS  Google Scholar 

  17. Chan, H.B., Bao, Y., Zou, J., Cirelli, R.A., Klemens, F., Mansfield, W.M., Pai, C.S.: Measurement of the Casimir force between a gold sphere and a silicon surface with nanoscale trench arrays. Phys. Rev. Lett. 101, 030401 (2008)

    Article  ADS  Google Scholar 

  18. Chen, F., Klimchitskaya, G.L., Mostepanenko, V.M., Mohideen, U.: Demonstration of the difference in the Casimir force for samples with different charge-carrier densities. Phys. Rev. Lett. 97, 170402 (2006)

    Article  ADS  Google Scholar 

  19. Chen, F., Klimchitskaya, G.L., Mostepanenko, V.M., Mohideen, U.: Control of the Casimir force by the modification of dielectric properties with light. Phys. Rev. B 76, 035338 (2007)

    Article  ADS  Google Scholar 

  20. Chen, F., Mohideen, U., Klimchitskaya, G.L., Mostepanenko, V.M.: Demonstration of the lateral Casimir force. Phys. Rev. Lett. 88, 101801 (2002)

    Article  ADS  Google Scholar 

  21. Chew, W.C., Jin, J.M., Michielssen, E., Song, J.M. (eds.): Fast and Efficient Algorithms in Computational Electrodynamics. Artech House, Norwood, MA (2001)

    Google Scholar 

  22. Dalvit, D.A.R., Lombardo, F.C., Mazzitelli, F.D., Onofrio, R.: Exact Casimir interaction between eccentric cylinders. Phys. Rev. A 74, 020101(R) (2006)

    Article  ADS  Google Scholar 

  23. Decca, R.S., López, D., Fischbach, E., Klimchitskaya, G.L., Krause, D.E., Mostepanenko, V.M.: Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates. Phys. Rev. D 75, 077101 (2007)

    Article  ADS  Google Scholar 

  24. Druzhinina, V., DeKieviet, M.: Experimental observation of quantum reflection far from threshold. Phys. Rev. Lett. 91, 193202 (2003)

    Article  ADS  Google Scholar 

  25. Dzyaloshinskii, I.E., Lifshitz, E.M., Pitaevskii, L.P.: The general theory of van der Waals forces. Adv. Phys. 10, 165–209 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  26. Earnshaw, S.: On the nature of the molecular forces which regulate the constitution of the luminiferous ether. Trans. Camb. Phil. Soc. 7, 97–112 (1842)

    ADS  Google Scholar 

  27. Ederth, T.: Template-stripped gold surfaces with 0.4-nm rms roughness suitable for force measurements: Application to the Casimir force in the 20–100 nm range. Phys. Rev. A 62, 062104 (2000)

    Article  ADS  Google Scholar 

  28. Emig, T., Graham, N., Jaffe, R.L., Kardar, M.: Casimir forces between arbitrary compact objects. Phys. Rev. Lett. 99, 170403 (2007)

    Article  ADS  Google Scholar 

  29. Emig, T., Graham, N., Jaffe, R.L., Kardar,M.: Casimir forces between compact objects: The scalar objects. Phys. Rev. D 77, 025005 (2008)

    Article  ADS  Google Scholar 

  30. Emig, T., Graham, N., Jaffe, R.L., Kardar, M.: Orientation dependence of Casimir forces. Phys. Rev. A 79, 054901 (2009)

    Article  ADS  Google Scholar 

  31. Emig, T., Hanke, A., Golestanian, R., Kardar, M.: Probing the strong boundary shape dependence of the Casimir force. Phys. Rev. Lett. 87, 260402 (2001)

    Article  ADS  Google Scholar 

  32. Emig, T., Hanke, A., Golestanian, R., Kardar, M.: Normal and lateral Casimir forces between deformed plates. Phys. Rev. A 67, 022114 (2003)

    Article  ADS  Google Scholar 

  33. Emig, T., Jaffe, R.L., Kardar, M., Scardicchio, A.: Casimir interaction between a plate and a cylinder. Phys. Rev. Lett. 96, 080403 (2006)

    Article  ADS  Google Scholar 

  34. Feinberg, G., Sucher, J.: General form of the retarded van der Waals potential. J. Chem. Phys. 48, 3333–3334 (1698)

    Article  Google Scholar 

  35. Feinberg, G., Sucher, J.: General theory of the van der Waals interaction: A model-independent approach. Phys. Rev. A 2, 2395–2415 (1970)

    Article  ADS  Google Scholar 

  36. Feynman, R.P., Hibbs, A.R.: Quantum mechanics and path integrals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  37. Geim, A.: Everyone’s magnetism. Phys. Today 51(9), 36–39 (1998)

    Article  Google Scholar 

  38. Genet, C., Lambrecht, A., Reynaud, S.: Casimir force and the quantum theory of lossy optical cavities. Phys. Rev. A 67, 043811 (2003)

    Article  ADS  Google Scholar 

  39. Gies, H., Klingmüller, K.: Casimir edge effects. Phys. Rev. Lett. 97, 220405 (2006)

    Article  ADS  Google Scholar 

  40. Golestanian, R.: Casimir-Lifshitz interaction between dielectrics of arbitrary geometry: A dielectric contrast perturbation theory. Phys. Rev. A 80, 012519 (2009)

    Article  ADS  Google Scholar 

  41. Golestanian, R., Kardar, M.: Mechanical response of vacuum. Phys. Rev. Lett. 78, 3421–3425 (1997)

    Article  ADS  Google Scholar 

  42. Golestanian, R., Kardar, M.: Path-integral approach to the dynamic Casimir effect with fluctuating boundaries. Phys. Rev. A 58, 1713–1722 (1998)

    Article  ADS  Google Scholar 

  43. Graham, N., Jaffe, R.L., Khemani, V., Quandt, M., Scandurra, M., Weigel, H.: Casimir energies in light of quantum field theory. Phys. Lett. B 572, 196–201 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Graham, N., Quandt, M., Weigel, H.: Spectral methods in quantum field theory. Springer, Berlin (2009)

    MATH  Google Scholar 

  45. Graham, N., Shpunt, A., Emig, T., Rahi, S.J., Jaffe, R.L., Kardar, M.: Casimir force at a knife’s edge. Phys. Rev. D 81, 061701(R) (2010)

    ADS  Google Scholar 

  46. Harber, D.M., Obrecht, J.M., McGuirk, J.M., Cornell, E.A.: Measurement of the Casimir-Polder force through center-of-mass oscillations of a Bose-Einstein condensate. Phys. Rev. A 72, 033610 (2005)

    Article  ADS  Google Scholar 

  47. Henseler, M., Wirzba, A., Guhr, T.: Quantization of HyperbolicN-Sphere scattering systems in three dimensions. Ann. Phys., NY 258, 286–319 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Jaekel, M.T., Reynaud, S.: Casimir force between partially transmitting mirrors. J. Physique I 1, 1395–1409 (1991)

    Article  ADS  Google Scholar 

  49. Jones, T.B.: Electromechanics of Particles. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  50. Kats, E.I.: Influence of nonlocality effects on van der Waals interaction. Sov. Phys. JETP 46, 109 (1997)

    ADS  Google Scholar 

  51. Kenneth, O., Klich, I.: Opposites Attract: A theorem about the Casimir force. Phys. Rev. Lett. 97, 160401 (2006)

    Article  ADS  Google Scholar 

  52. Kenneth, O., Klich, I.: Casimir forces in a T-operator approach. Phys. Rev. B 78, 014103 (2008)

    Article  ADS  Google Scholar 

  53. Kim, W.J., Brown-Hayes, M., Dalvit, D.A.R., Brownell, J.H., Onofrio, R.: Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry.Phys. Rev. A 78,020101(2008)

    Article  ADS  Google Scholar 

  54. Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: The Casimir force between real materials: Experiment and theory. Rev. Mod. Phys. 81, 1827–1885 (2009)

    Article  ADS  Google Scholar 

  55. Krause, D.E., Decca, R.S., López, D., Fischbach, E.: Experimental investigation of the Casimir force beyond the proximity-force approximation. Phys. Rev. Lett. 98, 050403 (2007)

    Article  ADS  Google Scholar 

  56. Krein, M.G.: On the trace formula in perturbation theory. Mat. Sborn. (NS) 33, 597–626 (1953)

    MathSciNet  Google Scholar 

  57. Krein, M.G.: Perturbation determinants and a formula for the trace of unitary and selfadjoint operators. Sov. Math.-Dokl. 3, 707–710 (1962)

    Google Scholar 

  58. Lambrecht, A., Neto, P.A.M., Reynaud, S.: The Casimir effect within scattering theory. New J. Phys. 8, 243 (2006)

    Article  ADS  Google Scholar 

  59. Lamoreaux, S.K.: Demonstration of the Casimir force in the 0.6 to \(6\, \upmu\hbox {m}\) range. Phys. Rev. Lett. 78, 5–8 (1997)

    Article  ADS  Google Scholar 

  60. Landau, L.D., Lifshitz, E.M.: Electrodynamics of continuous media. Pergamon Press, Oxford (1984)

    Google Scholar 

  61. Levin M., McCauley A.P., Rodriguez A.W., Reid M.T.H., Johnson S.G. (2010) Casimir repulsion between metallic objects in vacuum. arXiv:1003.3487

    Google Scholar 

  62. Li, H., Kardar, M.: Fluctuation-induced forces between rough surfaces. Phys. Rev. Lett. 67, 3275–3278 (1991)

    Article  ADS  Google Scholar 

  63. Li, H., Kardar, M.: Fluctuation-induced forces between manifolds immersed in correlated fluids. Phys. Rev. A 46, 6490–6500 (1992)

    Article  ADS  Google Scholar 

  64. Lifshitz, E.M.: The theory of molecular attractive forces between solids. Sov. Phys. JETP 2, 73–83 (1956)

    MathSciNet  Google Scholar 

  65. Lifshitz, E.M., Pitaevskii, L.P.: Statistical physics Part 2. Pergamon Press, New York (1980)

    Google Scholar 

  66. Lippmann, B.A., Schwinger, J.: Variational principles for scattering processes. i. Phys. Rev. 79, 469–480 (1950)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. Milton, K.A., Parashar, P., Wagner, J.: Exact results for Casimir interactions between dielectric bodies: The weak-coupling or van der waals limit. Phys. Rev. Lett. 101, 160402 (2008)

    Article  ADS  Google Scholar 

  68. Milton K.A., Parashar P., Wagner J. (2008) From multiple scattering to van der waals interactions: exact results for eccentric cylinders. arXiv:0811.0128

    Google Scholar 

  69. Mohideen, U., Roy, A.: Precision measurement of the Casimir force from 0.1–\(0.9\, \mu\hbox{m}\). Phys. Rev. Lett. 81, 4549–4552 (1998)

    Article  ADS  Google Scholar 

  70. Morse, P.M., Feshbach, H.: Methods of theoretical physics. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  71. Munday, J.N., Capasso, F.: Precision measurement of the Casimir-Lifshitz force in a fluid. Phys. Rev. A 75, 060102(R) (2007)

    Article  ADS  Google Scholar 

  72. Munday, J.N., Capasso, F., Parsegian, V.A.: Measured long-range repulsive Casimir-Lifshitz forces. Nature 457, 170–173 (2009)

    Article  ADS  Google Scholar 

  73. Palasantzas, G., van Zwol, P.J., De Hosson, J.T.M.: Transition from Casimir to van der Waals force between macroscopic bodies. Appl. Phys. Lett. 93, 121912 (2008)

    Article  ADS  Google Scholar 

  74. Parsegian, V.A.: van der Waals Forces. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  75. Rahi, S.J., Emig, T., Graham, N., Jaffe, R.L., Kardar, M.: Scattering theory approach to electrodynamic Casimir forces. Phys. Rev. D 80, 085021 (2009)

    Article  ADS  Google Scholar 

  76. Rahi, S.J., Emig, T., Jaffe, R.L., Kardar, M.: Casimir forces between cylinders and plates. Phys. Rev. A 78, 012104 (2008)

    Article  ADS  Google Scholar 

  77. Rahi S.J., Kardar M., Emig T. Constraints on stable equilibria with fluctuation-induced forces. Phys. Rev. Lett. 105, 070404 (2010)

    Google Scholar 

  78. Rahi, S.J., Rodriguez, A.W., Emig, T., Jaffe, R.L., Johnson, S.G., Kardar, M.: Nonmonotonic effects of parallel sidewalls on Casimir forces between cylinders. Phys. Rev. A 77, 030101 (2008)

    Article  ADS  Google Scholar 

  79. Rahi, S.J., Zaheer, S.: Stable levitation and alignment of compact objects by Casimir spring forces. Phys. Rev. Lett. 104, 070405 (2010)

    Article  ADS  Google Scholar 

  80. Reid, M.T.H., Rodriguez, A.W., White, J., Johnson, S.G.: Efficient computation of Casimir interactions between arbitrary 3D objects. Phys. Rev. Lett. 103, 040401 (2009)

    Article  ADS  Google Scholar 

  81. Renne, M.J.: Microscopic theory of retarded Van der Waals forces between macroscopic dielectric bodies. Physica 56, 125–137 (1971)

    Article  ADS  Google Scholar 

  82. Robaschik, D., Scharnhorst, K., Wieczorek, E.: Radiative corrections to the Casimir pressure under the influence of temperature and external fields. Ann. Phys., NY 174, 401–429 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  83. Rodriguez, A., Ibanescu, M., Iannuzzi, D., Capasso, F., Joannopoulos, J.D., Johnson, S.G.: Computation and visualization of Casimir forces in arbitrary geometries: Non-monotonic lateral-wall forces and failure of proximity force approximations. Phys. Rev. Lett. 99, 080401 (2007)

    Article  ADS  Google Scholar 

  84. Rodriguez, A.W., Joannopoulos, J.D., Johnson, S.G.: Repulsive, nonmonotonic Casimir forces in a glide-symmetric geometry. Phys. Rev. A 77, 062107 (2008)

    Article  ADS  Google Scholar 

  85. Rodriguez-Lopez, P., Rahi, S.J., Emig, T.: Three-body Casimir effects and nonmonotonic forces. Phys. Rev. A 80, 022519 (2009)

    Article  ADS  Google Scholar 

  86. Rosa, F.S.S.: On the possibility of Casimir repulsion using metamaterials. J. Phys.: Conf. Ser. 161, 012039 (2009)

    Article  ADS  Google Scholar 

  87. Rosa, F.S.S., Dalvit, D.A.R., Milonni, P.W.: Casimir-Lifshitz theory and metamaterials. Phys. Rev. Lett. 100, 183602 (2008)

    Article  ADS  Google Scholar 

  88. Roy, A., Lin, C.Y., Mohideen, U.: Improved precision measurement of the Casimir force. Phys. Rev. D 60, 111101(R) (1999)

    ADS  Google Scholar 

  89. Schaden, M., Spruch, L.: Infinity-free semiclassical evaluation of Casimir effects. Phys. Rev. A 58, 935–953 (1998)

    Article  ADS  Google Scholar 

  90. Schwinger, J.: Casimir effect in source theory. Lett. Math. Phys. 1, 43–47 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  91. Ttira, C.C., Fosco, C.D., Losada, E.L.: Non-superposition effects in the Dirichlet–Casimir effect. J. Phys. A: Math. Theor. 43, 235402 (2010)

    Article  ADS  Google Scholar 

  92. Weber, A., Gies, H.: Interplay between geometry and temperature for inclined Casimir plates. Phys. Rev. D 80, 065033 (2009)

    Article  ADS  Google Scholar 

  93. Wirzba, A.: Quantum mechanics and semiclassics of hyperbolic n-disk scattering systems. Phys. Rep. 309, 1–116 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  94. Wirzba, A.: The Casimir effect as a scattering problem. J. Phys. A: Math. Theor. 41, 164003 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  95. Zaheer, S., Rahi, S.J., Emig, T., Jaffe, R.L.: Casimir interactions of an object inside a spherical metal shell. Phys. Rev. A 81, 030502 (2010)

    Article  ADS  Google Scholar 

  96. Zhao, R., Zhou, J., Koschny, T., Economou, E.N., Soukoulis, C.M.: Repulsive Casimir force in chiral metamaterials. Phys. Rev. Lett. 103, 103602 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research presented here was conducted together with Noah Graham, Steven G. Johnson, Mehran Kardar, Alejandro W. Rodriguez, Pablo Rodriguez-Lopez, Alexander Shpunt, and Saad Zaheer, whom we thank for their collaboration. This work was supported by the National Science Foundation (NSF) through grant DMR-08-03315 (SJR), by the DFG through grant EM70/3 (TE) and by the U. S. Department of Energy (DOE) under cooperative research agreement #DF-FC02-94ER40818 (RLJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahand Jamal Rahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rahi, S.J., Emig, T., Jaffe, R.L. (2011). Geometry and Material Effects in Casimir Physics-Scattering Theory. In: Dalvit, D., Milonni, P., Roberts, D., da Rosa, F. (eds) Casimir Physics. Lecture Notes in Physics, vol 834. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20288-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20288-9_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20287-2

  • Online ISBN: 978-3-642-20288-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics