Study on the Effects of Pseudorandom Generation Quality on the Performance of Differential Evolution

  • Ville Tirronen
  • Sami Äyrämö
  • Matthieu Weber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6593)


Experiences in the field of Monte Carlo methods indicate that the quality of a random number generator is exceedingly significant for obtaining good results. This result has not been demonstrated in the field of evolutionary optimization, and many practitioners of the field assume that the choice of the generator is superfluous and fail to document this aspect of their algorithm. In this paper, we demonstrate empirically that the requirement of high quality generator does not hold in the case of Differential Evolution.


Differential Evolution Pseudorandom number generation Optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brent, R.P.: Uniform random number generators for supercomputers. In: Proceedings Fifth Australian Supercomputer Conference, pp. 95–104 (1992)Google Scholar
  2. 2.
    Cantú-Paz, E.: On random numbers and the performance of genetic algorithms. In: Langdon, W.B., Cantú-Paz, E., Mathias, K.E., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E.K., Jonoska, N. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 311–318 (2002)Google Scholar
  3. 3.
    Coddington, P.: Analysis of random number generators using monte carlo simulation. International Journal of Modern Physics C 5(3), 547–560 (1994)CrossRefGoogle Scholar
  4. 4.
    Davison, A., Hinkley, D.: Bootstrap methods and their application. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  5. 5.
    Feoktistov, V.: Differential evolution: in search of solutions. Springer, Inc., New York (2006)zbMATHGoogle Scholar
  6. 6.
    Hellekalek, P.: Don’t trust parallel monte carlo! In Parallel and Dis- tributed Simulation. In: Proceedings of Twelfth Workshop on Parallel and Distributed Simulation, PADS 1998, pp. 82–89. IEEE, Los Alamitos (1998)Google Scholar
  7. 7.
    Knuth, D.E.: The Art of Computer Programming. Seminumerical Algorithms, vol. 2. Addison-Wesley, Reading (1997)zbMATHGoogle Scholar
  8. 8.
    L’Ecuyer, P.: Testing random number generators (1992)Google Scholar
  9. 9.
    Lozano, M., Herrera, F.: Special issue of soft computing: A fusion of foundations, methodologies and applications on scalability of evolutionary algorithms and other metaheuristics for large scale continuous optimization problems (2009), Web document
  10. 10.
    Marsaglia, G.: Random numbers fall mainly in the planes. Proceedings of the National Academy of Sciences of the United States of America 61(1), 25 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Marsaglia, G.: A current view of random number generators. In: Computer Science and Statistics, Sixteenth Symposium on the Interface, pp. 3–10 (1985)Google Scholar
  12. 12.
    Marsaglia, G.: Xorshift rngs. Journal of Statistical Software 8(14), 1–6 (2003)CrossRefGoogle Scholar
  13. 13.
    Marsaglia, G., Zaman, A.: A new class of random number generators. The Annals of Applied Probability 1(3), 462–480 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Matsumoto, M., Nishimura, T.: Mersenne twister: a 623- dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation (TOMACS) 8(1), 3–30 (1998)CrossRefzbMATHGoogle Scholar
  15. 15.
    Meysenburg, M., Foster, J.: The quality of pseudo-random number generators and simple genetic algorithm performance. In: Proceedings of the Seventh International Conference on Genetic Algorithms, pp. 276–282 (1997)Google Scholar
  16. 16.
    Meysenburg, M., Foster, J.: Randomness and ga performance, revisited. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 1, pp. 425–432. Morgan Kaufmann Publishers, San Francisco (1999)Google Scholar
  17. 17.
    Meysenburg, M., Hoelting, D., McElvain, D., Foster, J.: How random generator quality impacts genetic algorithm performance. In: Langdon, W.B., Cantú-Paz, E., Mathias, K., et al. (Hg.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2002), pp. 480–483. Citeseer (2002) Google Scholar
  18. 18.
    Storn, R., Price, K.: Differential evolution a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization 11(4), 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tirronen, V., Weber, M.: Sparkline histograms for comparing evolutionary optimization methods. In: Proceedings of International Conference on Evolutionary Computation 2010. Springer, Heidelberg (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ville Tirronen
    • 1
  • Sami Äyrämö
    • 1
  • Matthieu Weber
    • 1
  1. 1.University of JyväskyläJyväskyläFinland

Personalised recommendations