Optimization of Topological Active Nets with Differential Evolution

  • Jorge Novo Buján
  • José Santos
  • Manuel G. Penedo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6593)


The Topological Active Net model for image segmentation is a deformable model that integrates features of region–based and boundary–based segmentation techniques. The segmentation process turns into a minimization task of the energy functions which control the model deformation. We used Differential Evolution as an alternative evolutionary method that minimizes the decisions of the designer with respect to other evolutionary methods such as genetic algorithms. Moreover, we hybridized Differential Evolution with a greedy search to integrate the advantages of global and local searches at the same time that the segmentation speed is improved.


Deformable contours Genetic Algorithms Differential Evolution Image Segmentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tsumiyama, K.S.Y., Yamamoto, K.: Active net: Active net model for region extraction. IPSJ SIG notes 89(96), 1–8 (1989)Google Scholar
  2. 2.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(2), 321–323 (1988)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ansia, F.M., Penedo, M.G., Mariño, C., Mosquera, A.: A new approach to active nets. Pattern Recognition and Image Analysis 2, 76–77 (1999)Google Scholar
  4. 4.
    Ballerini, L.: Medical image segmentation using genetic snakes. In: Proceedings of SPIE: Application and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation II, vol. 3812, pp. 13–23 (1999)Google Scholar
  5. 5.
    Séguier, R., Cladel, N.: Genetic snakes: Application on lipreading. In: International Conference on Artificial Neural Networks and Genetic Algorithms (2003)Google Scholar
  6. 6.
    Ballerini, L.: Genetic snakes: Active contour models by genetic algorithms. In: Cagnoni, S., Lutton, E., Olague, G. (eds.) Genetic and Evolutionary Computation in Image Processing and Computer Vision. EURASIP Book Series on SP & C, pp. 177–194 (2007)Google Scholar
  7. 7.
    MacEachern, L.A., Manku, T.: Genetic algorithms for active contour optimization. In: Proc. IEEE International Symposium on Circuits and Systems, vol. 4, pp. 229–232 (1998)Google Scholar
  8. 8.
    Fan, Y., Jiang, T.Z., Evans, D.J.: Volumetric segmentation of brain images using parallel genetic algorithms. IEEE Tran. on Medical Imaging 21(8), 904–909 (2002)CrossRefGoogle Scholar
  9. 9.
    Ooi, C., Liatsis, P.: Co-evolutionary-based active contour models in tracking of moving obstacles. In: International Conference on Advanced Driver Assistance Systems, pp. 58–62 (2001)Google Scholar
  10. 10.
    Tanatipanond, T., Covavisaruch, N.: A multiscale approach to deformable contour for brain MR images by genetic algorithm. In: The Third Annual National Symposium on Computational Science and Engineering, pp. 306–315 (1999)Google Scholar
  11. 11.
    Tohka, J., Mykkänen, J.M.: Deformable mesh for automated surface extraction from noisy images. Int. J. Image Graphics 4(3), 405–432 (2004)CrossRefGoogle Scholar
  12. 12.
    Tohka, J.: Global optimization of deformable surface meshes based on genetic algorithms. In: Proceedings ICIAP, pp. 459–464 (2001)Google Scholar
  13. 13.
    Ibáñez, O., Barreira, N., Santos, J., Penedo, M.G.: Genetic approaches for topological active nets optimization. Pattern Recognition 42, 907–917 (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    Price, K.V., Storn, R.M.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution. A Practical Approach to Global Optimization. Natural Computing Series. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  16. 16.
    Feoktistov, V.: Differential Evolution: In Search of Solutions. Springer, New York (2006)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jorge Novo Buján
    • 1
  • José Santos
    • 1
  • Manuel G. Penedo
    • 1
  1. 1.Computer Science DepartmentUniversity of A CoruñaSpain

Personalised recommendations