Skip to main content

Optimization of Topological Active Nets with Differential Evolution

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6593))

Abstract

The Topological Active Net model for image segmentation is a deformable model that integrates features of region–based and boundary–based segmentation techniques. The segmentation process turns into a minimization task of the energy functions which control the model deformation. We used Differential Evolution as an alternative evolutionary method that minimizes the decisions of the designer with respect to other evolutionary methods such as genetic algorithms. Moreover, we hybridized Differential Evolution with a greedy search to integrate the advantages of global and local searches at the same time that the segmentation speed is improved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tsumiyama, K.S.Y., Yamamoto, K.: Active net: Active net model for region extraction. IPSJ SIG notes 89(96), 1–8 (1989)

    Google Scholar 

  2. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(2), 321–323 (1988)

    Article  MATH  Google Scholar 

  3. Ansia, F.M., Penedo, M.G., Mariño, C., Mosquera, A.: A new approach to active nets. Pattern Recognition and Image Analysis 2, 76–77 (1999)

    Google Scholar 

  4. Ballerini, L.: Medical image segmentation using genetic snakes. In: Proceedings of SPIE: Application and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation II, vol. 3812, pp. 13–23 (1999)

    Google Scholar 

  5. Séguier, R., Cladel, N.: Genetic snakes: Application on lipreading. In: International Conference on Artificial Neural Networks and Genetic Algorithms (2003)

    Google Scholar 

  6. Ballerini, L.: Genetic snakes: Active contour models by genetic algorithms. In: Cagnoni, S., Lutton, E., Olague, G. (eds.) Genetic and Evolutionary Computation in Image Processing and Computer Vision. EURASIP Book Series on SP & C, pp. 177–194 (2007)

    Google Scholar 

  7. MacEachern, L.A., Manku, T.: Genetic algorithms for active contour optimization. In: Proc. IEEE International Symposium on Circuits and Systems, vol. 4, pp. 229–232 (1998)

    Google Scholar 

  8. Fan, Y., Jiang, T.Z., Evans, D.J.: Volumetric segmentation of brain images using parallel genetic algorithms. IEEE Tran. on Medical Imaging 21(8), 904–909 (2002)

    Article  Google Scholar 

  9. Ooi, C., Liatsis, P.: Co-evolutionary-based active contour models in tracking of moving obstacles. In: International Conference on Advanced Driver Assistance Systems, pp. 58–62 (2001)

    Google Scholar 

  10. Tanatipanond, T., Covavisaruch, N.: A multiscale approach to deformable contour for brain MR images by genetic algorithm. In: The Third Annual National Symposium on Computational Science and Engineering, pp. 306–315 (1999)

    Google Scholar 

  11. Tohka, J., Mykkänen, J.M.: Deformable mesh for automated surface extraction from noisy images. Int. J. Image Graphics 4(3), 405–432 (2004)

    Article  Google Scholar 

  12. Tohka, J.: Global optimization of deformable surface meshes based on genetic algorithms. In: Proceedings ICIAP, pp. 459–464 (2001)

    Google Scholar 

  13. Ibáñez, O., Barreira, N., Santos, J., Penedo, M.G.: Genetic approaches for topological active nets optimization. Pattern Recognition 42, 907–917 (2009)

    Article  MATH  Google Scholar 

  14. Price, K.V., Storn, R.M.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution. A Practical Approach to Global Optimization. Natural Computing Series. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  16. Feoktistov, V.: Differential Evolution: In Search of Solutions. Springer, New York (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buján, J.N., Santos, J., Penedo, M.G. (2011). Optimization of Topological Active Nets with Differential Evolution. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6593. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20282-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20282-7_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20281-0

  • Online ISBN: 978-3-642-20282-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics