Advertisement

CellularDE: A Cellular Based Differential Evolution for Dynamic Optimization Problems

  • Vahid Noroozi
  • Ali B. Hashemi
  • Mohammad Reza Meybodi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6593)

Abstract

In real life we are often confronted with dynamic optimization problems whose optima change over time. These problems challenge traditional optimization methods as well as conventional evolutionary optimization algorithms. In this paper, we propose an evolutionary model that combines the differential evolution algorithm with cellular automata to address dynamic optimization problems. In the proposed model, called CellularDE, a cellular automaton partitions the search space into cells. Individuals in each cell, which implicitly create a subpopulation, are evolved by the differential evolution algorithm to find the local optimum in the cell neighborhood. Experimental results on the moving peaks benchmark show that CellularDE outperforms DynDE, cellular PSO, FMSO, and mQSO in most tested dynamic environments.

Keywords

Dynamic environments Differential evolution Cellular Automata 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yang, S.: Genetic algorithms with memory-and elitism-based immigrants in dynamic environments. Evolutionary Computation 16, 385–416 (2008)CrossRefGoogle Scholar
  2. 2.
    Grefenstette, J.J.: Genetic algorithms for changing environments. In: Männer, R., Manderick, B. (eds.) Proc. of the 2nd Int. Conf. on Parallel Problem Solving from Nature, pp. 137–144 (1992)Google Scholar
  3. 3.
    Goldberg, D., Smith, R.: Nonstationary function optimization using genetic algorithms with dominance and diploidy, pp. 59–68. L. Erlbaum Associates Inc., Mahwah (1987)Google Scholar
  4. 4.
    Yang, S.: Non-stationary problem optimization using the primal-dual genetic algorithm, vol. 3, pp. 2246–2253. IEEE, Los Alamitos (2004)Google Scholar
  5. 5.
    Cobb, H.G., Grefenstette, J.J.: Genetic Algorithms for Tracking Changing Environments. In: Proceedings of the 5th International Conference on Genetic Algorithms, June 01, pp. 523–530 (1993)Google Scholar
  6. 6.
    Morrison, R., De Jong, K.: Triggered hypermutation revisited, vol. 2, pp. 1025–1032. IEEE, Los Alamitos (2002)Google Scholar
  7. 7.
    Mendes, R., Mohais, A.: DynDE: a differential evolution for dynamic optimization problems, vol. 3, pp. 2808–2815. IEEE, Los Alamitos (2005)Google Scholar
  8. 8.
    Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Transactions on Evolutionary Computation 10, 440–458 (2006)CrossRefGoogle Scholar
  9. 9.
    Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey. IEEE Transactions on Evolutionary Computation 9, 303–317 (2005)CrossRefGoogle Scholar
  10. 10.
    Moser, I., Chiong, R.: Dynamic function optimisation with hybridised extremal dynamics. Memetic Computing 2, 137–148 (2010)CrossRefGoogle Scholar
  11. 11.
    Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization 11, 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Price, K., Storn, R., Lampinen, J.: Differential evolution: a practical approach to global optimization. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  13. 13.
    du Plessis, M., Engelbrecht, A.: Improved differential evolution for dynamic optimization problems, pp. 229–234. IEEE, Los Alamitos (2008)Google Scholar
  14. 14.
    Brest, J., Zamuda, A., Boskovic, B., Maucec, M., Zumer, V.: Dynamic optimization using self-adaptive differential evolution, pp. 415–422. IEEE, Los Alamitos (2009)Google Scholar
  15. 15.
    Kanlikilicer, A., Keles, A., Uyar, A.: Experimental analysis of binary differential evolution in dynamic environments, pp. 2509–2514. ACM, New York (2007)Google Scholar
  16. 16.
    Hashemi, A.B., Meybodi, M.: A multi-role cellular PSO for dynamic environments, pp. 412–417. IEEE, Los Alamitos (2009), http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5349615 Google Scholar
  17. 17.
    Hashemi, A.B., Meybodi, M.: Cellular PSO: A PSO for dynamic environments. In: Cai, Z., Li, Z., Kang, Z., Liu, Y. (eds.) ISICA 2009. LNCS, vol. 5821, pp. 422–433. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Li, C., Yang, S.: Fast multi-swarm optimization for dynamic optimization problems, vol. 7, pp. 624–628. IEEE, Los Alamitos (2008)Google Scholar
  19. 19.
    Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Transactions on Evolutionary Computation 10, 459–472 (2006)CrossRefGoogle Scholar
  20. 20.
    Blackwell, T.: Particle swarm optimization in dynamic environments. In: Evolutionary Computation in Dynamic and Uncertain Environments, pp. 29–49 (2007)Google Scholar
  21. 21.
    Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems, vol. 3. IEEE, Los Alamitos (2002)zbMATHGoogle Scholar
  22. 22.
    Branke, J.: Evolutionary optimization in dynamic environments. Kluwer Academic Publishers, Norwell (2001)zbMATHGoogle Scholar
  23. 23.
    Fredkin, E.: An informational process based on reversible universal cellular automata. Physica D: Nonlinear Phenomena 45, 254–270 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Vahid Noroozi
    • 1
  • Ali B. Hashemi
    • 1
  • Mohammad Reza Meybodi
    • 1
  1. 1.Computer Engineering and Information Technology DepartmentAmirkabir University of TechnologyTehranIran

Personalised recommendations