Skip to main content

Input Separability in Living Liquid State Machines

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6593))

Included in the following conference series:

Abstract

To further understand computation in living neuronal networks (LNNs) and improve artificial neural networks (NNs), we seek to create ahybrid liquid state machine (LSM) that relies on an LNN for the reservoir.This study embarks on a crucial first step, establishing effective methods for findinglarge numbers of separable input stimulation patternsin LNNs. The separation property is essential forinformation transfer to LSMs and therefore necessary for computation in our hybrid system. In order to successfully transfer information to the reservoir, it must be encoded into stimuli that reliably evoke separable responses. Candidate spatio-temporal patterns are delivered to LNNs via microelectrode arrays (MEAs), and the separability of their corresponding responses is assessed. Support vector machine (SVM)classifiers assess separability and a genetic algorithm-based method identifiessubsets of maximally separable patterns. The tradeoff between symbol set sizeand separabilityis evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taketani, M., Baudry, M.: Advances in Network Electrophysiology Using Multi-Electrode Arrays. Springer, Heidelberg (2006)

    Book  Google Scholar 

  2. Bakkum, D.J., Chao, Z.C., Potter, S.M.: Spatio-Temporal Electrical Stimuli Shape Behavior of an Embodied Cortical Network in a Goal-Directed Learning Task. J. Neur. Eng., 310–323 (2008)

    Google Scholar 

  3. Park, J., Harley, R., Venayagamoorthy, G.: Adaptive Critic Based Optimal Neurocontrol for Synchronous Generator in Power System Using MLP/RBF Neural Networks. IEEE Trans. on Industry Applications 39(5) (2003)

    Google Scholar 

  4. Potter, S.M., Wagenaar, D.A., DeMarse, T.B.: Closing the Loop: Stimulation Feedback Systems for Embodied MEA Cultures (2001)

    Google Scholar 

  5. Wagenaar, D.A.: Persistent Dynamic Attractors in Activity Patterns of Cultured Neuronal Networks. Phys. Rev. E. 73(5) (2006)

    Google Scholar 

  6. Potter, S.M., DeMarse, T.B.: A New Approach to Neural Cell Culture for Long-Term Studies. J. Neurosci. Methods 110, 17–24 (2001)

    Article  Google Scholar 

  7. Rolston, J.: Creating NeuroRighter (2009), http://groups.google.com/group/neurorighter-users

  8. Rolston, J.D., Gross, R.E., Potter, S.M.: A Low-Cost Multielectrode System for Data Acquisition Enabling Real-Time Closed-Loop Processing with Rapid Recovery from Stimulation Artifacts. Frontiers in Neuroengineering 2(12), 1–17 (2009)

    Google Scholar 

  9. Maass, W., Natschlaeger, T., Markram, H.: A model for real-time computation in Generic Neural Microcircuits. Adv. Neural Info. Proc. Sys. 15, 229–236 (2003)

    Google Scholar 

  10. Wagenaar, D.A., Madhavan, R., Potter, S.M.: Controlling Bursting in Cortical Cultures with Multi-Electrode Stimulation. J. Neurosci. 25(3), 680–688 (2005)

    Article  Google Scholar 

  11. Hafizovic, S., Heer, F., et al.: A CMOS-Based Microelectrode Array for Interaction with Neuronal Cultures. J. Neurosci. Methods, 93–106 (2007)

    Google Scholar 

  12. Dockendorf, K.P., Park, I.: Liquid State Machines and Cultured Cortical Networks: The Separation Property. Biosystems 95, 90–97 (2009)

    Article  Google Scholar 

  13. Wagenaar, D.A., Potter, S.M.: Real-Time Multi-Channel Stimulus Artifact Suppression by Local Curve Fitting. J. Neurosci. Methods 120, 113–120 (2002)

    Article  Google Scholar 

  14. QuianQuiroga, R., Nadasdy, Z., Ben-Shaul, Y.: Unsupervised Spike Detection and Sorting with Wavelets and Superparamagnetic Clustering. Neural Comput. 16, 1661–1687 (2004)

    Article  MATH  Google Scholar 

  15. Chang, C.-C., Lin, C.-J.: LIBSVM: A Library for Support Vector Machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm (September 2010) release

  16. Geisser, S.: Predictive Inference, New York (1993)

    Google Scholar 

  17. Mosteller, F.: A k-sample SlippageTest for an Extreme Population. Annals of Mathematical Statistics 19(1), 58–65 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fraser, A.S.: Simulation of Genetic Systems by Automatic Digital Computers. Australian Journal of Bio. Sci. 10, 484–491 (1957)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ortman, R.L., Venayagamoorthy, K., Potter, S.M. (2011). Input Separability in Living Liquid State Machines. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6593. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20282-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20282-7_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20281-0

  • Online ISBN: 978-3-642-20282-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics