Optimisation of Concentrating Solar Thermal Power Plants with Neural Networks

  • Pascal Richter
  • Erika Ábrahám
  • Gabriel Morin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6593)


The exploitation of solar power for energy supply is of increasing importance. While technical development mainly takes place in the engineering disciplines, computer science offers adequate techniques for simulation, optimisation and controller synthesis.

In this paper we describe a work from this interdisciplinary area. We introduce our tool for the optimisation of parameterised solar thermal power plants, and report on the employment of genetic algorithms and neural networks for parameter synthesis. Experimental results show the applicability of our approach.


Optimization Solar thermal power plants Neural networks Genetic algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  2. 2.
    Bishop, J.M., Bushnell, M.J., Usher, A., Westland, S.: Genetic optimisation of neural network architectures for colour recipe prediction. In: International Joint Conference on Neural Networks and Genetic Algorithms, pp. 719–725 (1993)Google Scholar
  3. 3.
    Goldberg, D.E., et al.: Genetic algorithms in search, optimization, and machine learning. Addison-wesley, Reading (1989)zbMATHGoogle Scholar
  4. 4.
    Hancock, P., Smith, L.: GANNET: Genetic design of a neural net for face recognition. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 292–296. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  5. 5.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America 79(8), 2554 (1982)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Liau, E., Schmitt-Landsiedel, D.: Automatic worst case pattern generation using neural networks & genetic algorithm for estimation of switching noise on power supply lines in cmos circuits. In: European Test Workshop, IEEE, pp. 105–110 (2003)Google Scholar
  7. 7.
    Lopez, R.: Flood: An open source neural networks C++ library. Universitat Politècnica de Catalunya, Barcelona (2008), Google Scholar
  8. 8.
    Mandic, D.P., Chambers, J.A.: Recurrent neural networks for prediction: Learning algorithms, architectures and stability. Wiley, Chichester (2001)CrossRefGoogle Scholar
  9. 9.
    Maniezzo, V.: Genetic evolution of the topology and weight distribution of neural networks. IEEE Transactions on Neural Networks 5(1) (1994)Google Scholar
  10. 10.
    Morin, G.: Techno-economic design optimization of solar thermal power plants. PhD thesis, Technische Universität Braunschweig (2010)Google Scholar
  11. 11.
    Schimann, W., Joost, M., Werner, R.: Application of genetic algorithms to the construction of topologies for multilayer perceptrons. In: International Joint Conference on Neural Networks and Genetic Algorithms, pp. 675–682 (1993)Google Scholar
  12. 12.
    Software Thermoflex: software developed and distributed by Thermoflow Inc.
  13. 13.
    Wall, M.: GAlib: A C++ library of genetic algorithm components (1996),
  14. 14.
    Wittwer, C.: ColSim Simulation von Regelungssystemen in aktiven Solarthermischen Anlagen. PhD thesis, Universität Karlsruhe (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pascal Richter
    • 1
    • 2
  • Erika Ábrahám
    • 1
  • Gabriel Morin
    • 2
  1. 1.Computer Science 2RWTH Aachen UniversityAachenGermany
  2. 2.Fraunhofer Institute for Solar Energy SystemsFreiburgGermany

Personalised recommendations