Using Pattern Recognition to Predict Driver Intent

  • Firas Lethaus
  • Martin R. K. Baumann
  • Frank Köster
  • Karsten Lemmer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6593)


Advanced Driver Assistance Systems (ADAS) should correctly infer the intentions of the driver from what is implied by the incoming data available to it. Gaze behaviour has been found to be an indicator of information gathering, and therefore could be used to derive information about the driver’s next planned objective in order to identify intended manoeuvres without relying solely on car data. Previous work has shown that significantly distinct gaze patterns precede each of the driving manoeuvres analysed indicating that eye movement data might be used as input to ADAS supplementing sensors, such as CAN-Bus, laser, or radar in order to recognise intended driving manoeuvres. Drivers’ gaze behaviour was measured prior to and during the execution of different driving manoeuvres performed in a dynamic driving simulator. The efficacy of Artificial Neural Network models in learning to predict the occurrence of certain driving manoeuvres using both car and gaze data was investigated, which could successfully be demonstrated with real traffic data [1]. Issues considered included the amount of data prior to the manoeuvre to use, the relative difficulty of predicting different manoeuvres, and the accuracy of the models at different pre-manoeuvre times.


Pattern Recognition Driver Intent Driving Manoeuvres Eye Tracking Artificial Neural Networks Machine Learning Signal Detection Theory ROC curves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lethaus, F.: Using eye movements to predict driving manoeuvres. In: Europe Chapter of the Human Factors and Ergonomics Society Annual Conference, Linköping, Sweden (2009)Google Scholar
  2. 2.
    German Federal Statistical Office: Unfallgeschehen im Straßenverkehr 2006 (Road Traffic Accidents 2006). Federal Statistical Office 2006-PressOffice, Wiesbaden (2007)Google Scholar
  3. 3.
    Dingus, T.A., Hulse, M.C., Barfield, W.: Human-system interface issues in the design and use of advanced traveller information systems. In: Barfield, W., Dingus, T.A. (eds.) Human Factors in Intelligent Transportation Systems, pp. 359–395. Lawrence Erlbaum Associates, London (1998)Google Scholar
  4. 4.
    Suzuki, K., Jansson, H.: An analysis of driver’s steering behaviour during auditory or haptic warnings for the designing of lane departure warning system. JSAE Review 24, 65–70 (2003)CrossRefGoogle Scholar
  5. 5.
    Henderson, J.M., Ferreira, F.: Scene perception for psycholinguists. In: Henderson, J.M., Ferreira, F. (eds.) The Interface of Language, Vision, and Action: Eye Movements and the Visual World, pp. 1–58. Psychology Press, New York (2004)Google Scholar
  6. 6.
    Liu, A.: Towards predicting driver intentions from patterns of eye fixations. In: Gale, A.G., Brown, I.D., Haslegrave, C.M., Taylor, S.P. (eds.) Vision in Vehicles VII, pp. 205–212. Elsevier, Amsterdam (1999)Google Scholar
  7. 7.
    Vollrath, M., Totzke, I.: Möglichkeiten der Nutzung unterschiedlicher Ressourcen für die Fahrer-Fahrzeug-Interaktion. In: Proceedings of Der Fahrer im 21. Jahrhundert, Braunschweig (2003)Google Scholar
  8. 8.
    Wickens, C.D.: The structure of attentional resources. In: Nickerson, R. (ed.) Attention and Performance VIII, pp. 239–257. Lawrence Erlbaum Associates, Hillsdale (1980)Google Scholar
  9. 9.
    Wickens, C.D.: Processing resources in attention. In: Parasuraman, R., Davies, D.R. (eds.) Varieties of Attention, pp. 63–102. Academic Press, San Diego (1984)Google Scholar
  10. 10.
    Oliver, N., Pentland, A.P.: Graphical models for driver behavior recognition in a SmartCar. In: Proceedings of IEEE Conference on Intelligent Vehicles, Detroit, MI, USA (2000)Google Scholar
  11. 11.
    Kuge, N., Yamamura, T., Shimoyama, O., Liu, A.: A driver behavior recognition method based on a driver model framework. In: Proceedings of SAE World Congress 2000, Detroit, MI, USA (2000)Google Scholar
  12. 12.
    Salvucci, D.D., Boer, E.R., Liu, A.: Toward an integrated model of driver behavior in a cognitive architecture. Transportation Research Record 1779, 9–16 (2001)CrossRefGoogle Scholar
  13. 13.
    Salvucci, D.D.: Inferring driver intent: a case study in lane-change detection. In: Proceedings of the HFES 48th Annual Meeting, Santa Monica, CA, USA (2004)Google Scholar
  14. 14.
    Anderson, J.R., Lebiere, C.: The atomic components of thought. Lawrence Erlbaum Associates, London (1998)Google Scholar
  15. 15.
    Lethaus, F., Rataj, J.: Do eye movements reflect driving manoeuvres? IET Intelligent Transport Systems 1(3), 199–204 (2007)CrossRefGoogle Scholar
  16. 16.
    Lethaus, F., Rataj, J.: Using eye movements as a reference to identify driving manoeuvres. In: ATZ | ATZautotechnology (ed.) Proceedings of the FISITA World Automotive Congress 2008, vol. 1. Springer Automotive Media, Wiesbaden (2008)Google Scholar
  17. 17.
    Mourant, R.R., Donohue, R.J.: Acquisition of indirect vision information by novice, experiences, and mature drivers. Journal of Safety Research 9, 39–46 (1977)Google Scholar
  18. 18.
    Pastor, G., Tejero, P., Chóliz, M., Roca, J.: Rear-view mirror use, driver alertness and road type: an empirical study using EEG measures. Transportation Research: Part F 9, 286–297 (2006)Google Scholar
  19. 19.
    Underwood, G., Chapman, P., Brocklehurst, N., Underwood, J., Crundall, D.E.: Visual attention while driving: sequences of eye fixations made by experienced and novice drivers. Ergonomics 46(6), 629–646 (2003)CrossRefGoogle Scholar
  20. 20.
    Recarte, M.A., Nunes, L.M.: Effects of verbal and spatial-imagery tasks on eye fixations while driving. Journal of Experimental Psychology: Applied 6(1), 31–43 (2000)Google Scholar
  21. 21.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)Google Scholar
  22. 22.
    Brophy, A.L.: Alternatives to a table of criterion values in signal detection theory. Behavior Research Methods, Instruments, & Computers 18, 285–286 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Firas Lethaus
    • 1
  • Martin R. K. Baumann
    • 1
  • Frank Köster
    • 1
  • Karsten Lemmer
    • 1
  1. 1.Institute of Transportation SystemsGerman Aerospace Center (DLR)Germany

Personalised recommendations