Mechanisms of Adaptive Spatial Integration in a Neural Model of Cortical Motion Processing

  • Stefan Ringbauer
  • Stephan Tschechne
  • Heiko Neumann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6593)


In visual cortex information is processed along a cascade of neural mechanisms that pool activations from the surround with spatially increasing receptive fields. Watching a scenery of multiple moving objects leads to object boundaries on the retina defined by discontinuities in feature domains such as luminance or velocities. Spatial integration across the boundaries mixes distinct sources of input signals and leads to unreliable measurements. Previous work [6] proposed a luminance-gated motion integration mechanism, which does not account for the presence of discontinuities in other feature domains. Here, we propose a biologically inspired model that utilizes the low and intermediate stages of cortical motion processing, namely V1, MT and MSTl, to detect motion by locally adapting spatial integration fields depending on motion contrast. This mechanism generalizes the concept of bilateral filtering proposed for anisotropic smoothing in image restoration in computer vision.


Motion Estimation Neural Modeling Motion Integration Diffusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brox, T., Papenberg, N., Weickert, J.: High Accuracy Optical Flow Estimation Based on a Theory for Warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Physik, F.A.: Poggendorff’s Annel (1855)Google Scholar
  3. 3.
    Horn, B., Schunck, B.: Determining optical Flow. Artificial Intelligence 17(1-3), 185–203 (1981)CrossRefGoogle Scholar
  4. 4.
    Raudies, F., Neumann, H.: A model of neural mechanisms in monocular transparent motion perception. Journal of Physiology 104(1-2), 71–83 (2010)Google Scholar
  5. 5.
    Deqing, S., Roth, S., Black, M.: Secrets of Optical Flow Estimation and Their Principles. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2432–2439 (2010)Google Scholar
  6. 6.
    Tlapale, E., Masson, G., Kornprobst, P.: Modelling the dynamics of motion integration with a new luminance-gated diffusion mechanism. Vision Research 50(17), 1676–1692 (2010)CrossRefGoogle Scholar
  7. 7.
    Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner Verlag, Stuttgart (1998)zbMATHGoogle Scholar
  8. 8.
    Eifuku, S., Wurtz, R.: Response to motion in extrastriate area MSTl: Disparity sensitivity. Journal of Neurophysiology 82(5), 2462 (1999)Google Scholar
  9. 9.
    Hegde, J., van Essen, D.: Selectivity for complex shapes in primate visual area V2. The Journal of Neuroscience 20, RC61 (2000)Google Scholar
  10. 10.
    Barron, J., Fleet, D., Beauchemin, S.: Performance of Optical Flow Techniques. International Journal of Computer Vision 12(1), 43–77 (1994)CrossRefGoogle Scholar
  11. 11.
    Neumann, H., Sepp, W.: Recurrent V1-V2 interaction in early visual boundary. Processing. Biol. Cyber. 81, 425–444 (1999)CrossRefGoogle Scholar
  12. 12.
    Thielscher, A., Neumann, H.: Neural mechanisms of human texture processing: texture boundary detection and visual search. Spatial vision 18(2), 227–257 (2005)CrossRefGoogle Scholar
  13. 13.
    Weitzel, L., Kopecz, K., Spengler, C., Eckhorn, R., Reitboeck, H.: Contour Segmentation with Recurrent Neural Networks of Pulse-Coding Neurons. In: Int. Conference on Computer Analysis of Images and Patterns (2000)Google Scholar
  14. 14.
    Hansen, T., Neumann, H.: A recurrent model of contour integration in primary visual cortex. Journal of Vision 8, 1–25 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Stefan Ringbauer
    • 1
  • Stephan Tschechne
    • 1
  • Heiko Neumann
    • 1
  1. 1.Faculty of Engineering and Computer Science Institute for Neural Information ProcessingUlm UniversityUlmGermany

Personalised recommendations