Advertisement

The Right Delay

Detecting Specific Spike Patterns with STDP and Axonal Conduction Delays
  • Arvind Datadien
  • Pim Haselager
  • Ida Sprinkhuizen-Kuyper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6593)

Abstract

Axonal conduction delays should not be ignored in simulations of spiking neural networks. Here it is shown that by using axonal conduction delays, neurons can display sensitivity to a specific spatio-temporal spike pattern. By using delays that complement the firing times in a pattern, spikes can arrive simultaneously at an output neuron, giving it a high chance of firing in response to that pattern. An unsupervised learning mechanism called spike-timing-dependent plasticity then increases the weights for connections used in the pattern, and decreases the others. This allows for an attunement of output neurons to specific activity patterns, based on temporal aspects of axonal conductivity.

Keywords

Spiking neural networks STDP Axonal delay Spatio-temporal pattern 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caporale, N., Dan, Y.: Spike Timing–Dependent Plasticity: A Hebbian Learning Rule. Annu. Rev. Neurosci. 31, 25–46 (2008)CrossRefGoogle Scholar
  2. 2.
    Hebb, D.: The organization of behavior: A neuropsychological theory. John Wiley & Sons, Inc., New York (1949)Google Scholar
  3. 3.
    Izhikevich, E.: Simple model of spiking neurons. IEEE Transactions on Neural Networks 14(6), 1569–1572 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Izhikevich, E.: Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks 15(5), 1063–1070 (2004)CrossRefGoogle Scholar
  5. 5.
    Izhikevich, E.: Polychronization: Computation with spikes. Neural Computation 18(2), 245–282 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Masquelier, T., Guyonneau, R., Thorpe, S.: Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains. PLoS ONE 3(1), e1377 (2008)CrossRefGoogle Scholar
  7. 7.
    Masquelier, T., Guyonneau, R., Thorpe, S.: Competitive STDP-based spike pattern learning. Neural Computation 21(5), 1259–1276 (2009)CrossRefzbMATHGoogle Scholar
  8. 8.
    Nessler, B., Pfeiffer, M., Maass, W.: STDP enables spiking neurons to detect hidden causes of their inputs. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 22, pp. 1357–1365 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Arvind Datadien
    • 1
  • Pim Haselager
    • 1
    • 2
  • Ida Sprinkhuizen-Kuyper
    • 1
    • 2
  1. 1.Department of Artificial IntelligenceRadboud University NijmegenThe Netherlands
  2. 2.Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenThe Netherlands

Personalised recommendations