Skip to main content

Similarity of Transcription Profiles for Genes in Gene Sets

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6594))

Included in the following conference series:

  • 1644 Accesses

Abstract

In gene set focused knowledge-based analysis we assume that genes from the same functional gene set have similar transcription profiles. We compared the distributions of similarity scores of gene transcription profiles between genes from the same gene sets and genes chosen at random. In line with previous research, our results show that transcription profiles of genes from the same gene sets are on average indeed more similar than random transcription profiles, although the differences are slight. We performed the experiments on 35 human cancer data sets, with KEGG pathways and BioGRID interactions as gene set sources. Pearson correlation coefficient and interaction gain were used as association measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anastassiou, D.: Computational analysis of the synergy among multiple interacting genes. Mol. Syst. Biol. 3(83) (February 2007)

    Google Scholar 

  2. Ashburner, M., Ball, C., Blake, J., Botstein, D., Butler, H., Cherry, J., Davis, A., Dolinski, K., Dwight, S., Eppig, J., et al.: Gene ontology: tool for the unification of biology. Nature genetics 25(1), 25–29 (2000)

    Article  Google Scholar 

  3. Barrett, T., Troup, D.B., Wilhite, S.E., Ledoux, P., Rudnev, D., Evangelista, C., Kim, I.F., Soboleva, A., Tomashevsky, M., Edgar, R.: NCBI GEO: mining tens of millions of expression profiles–database and tools update. Nucl. Acids Res. 35, D760–765 (2007)

    Article  Google Scholar 

  4. Bellazzi, R., Zupan, B.: Towards knowledge-based gene expression data mining. Journal of Biomedical Informatics 40(6), 787–802 (2007)

    Article  Google Scholar 

  5. Bhardwaj, N., Lu, H.: Correlation between gene expression profiles and protein–protein interactions within and across genomes. Bioinformatics 21(11), 2730 (2005)

    Article  Google Scholar 

  6. Demšar, J., Zupan, B., Leban, G.: Orange: From experimental machine learning to interactive data mining, white paper (2004)

    Google Scholar 

  7. Fraser, H., Hirsh, A., Wall, D., Eisen, M.: Coevolution of gene expression among interacting proteins. Proceedings of the National Academy of Sciences of the United States of America 101(24), 9033 (2004)

    Article  Google Scholar 

  8. Jakulin, A., Bratko, I.: Analyzing attribute dependencies. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 229–240. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Jansen, R., Greenbaum, D., Gerstein, M.: Relating whole-genome expression data with protein-protein interactions. Genome Research 12(1), 37 (2002)

    Article  Google Scholar 

  10. Jelizarow, M., Guillemot, V., Tenenhaus, A., Strimmer, K., Boulesteix, A.: Over-optimism in bioinformatics: an illustration. Bioinformatics 26(16), 1990 (2010)

    Article  Google Scholar 

  11. Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., Hirakawa, M.: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Research 38(Database issue), D355 (2010)

    Article  Google Scholar 

  12. Lee, E., Chuang, H.Y., Kim, J.W., et al.: Inferring pathway activity toward precise disease classification. PLoS Comput. Biol. 4(11), e1000217 (2008)

    Article  Google Scholar 

  13. Lee, H., Hsu, A., Sajdak, J., Qin, J., Pavlidis, P.: Coexpression analysis of human genes across many microarray data sets. Genome Research 14(6), 1085 (2004)

    Article  Google Scholar 

  14. Mramor, M., Toplak, M., Leban, G., Curk, T., Demšar, J., Zupan, B.: On utility of gene set signatures in gene expression-based cancer class prediction. In: Machine Learning in Systems Biology, p. 65 (2009)

    Google Scholar 

  15. Nam, D., Kim, S.Y.: Gene-set approach for expression pattern analysis. Brief Bioinform 9(3), 189–197 (2008)

    Article  Google Scholar 

  16. Sheskin, D.: Handbook of parametric and nonparametric statistical procedures. CRC Pr I Llc (2004)

    Google Scholar 

  17. Stark, C., Breitkreutz, B., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Research 34(suppl. 1), 535 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Toplak, M., Curk, T., Zupan, B. (2011). Similarity of Transcription Profiles for Genes in Gene Sets. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20267-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20267-4_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20266-7

  • Online ISBN: 978-3-642-20267-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics