Skip to main content

Bioenergy Systems, Soil Health and Climate Change

  • Chapter
  • First Online:
Soil Health and Climate Change

Part of the book series: Soil Biology ((SOILBIOL,volume 29))

Abstract

Biomass energy (bioenergy) could play a significant role in meeting global energy demands. But this would entail a substantial increase in the scale and intensity of biomass production, which could have negative implications for soil health. Bioenergy can contribute to climate change mitigation through displacement of fossil fuels and potentially through sequestration of carbon. Conversely, the required expansion of bioenergy feedstock production could lead to emissions through loss of soil carbon, especially through indirect land use change (iLUC). The gain or loss of terrestrial carbon is determined by the LUC and systems used for biomass production. In this chapter, we first define bioenergy systems and outline their potential to deliver low-carbon energy. We then describe the opportunities and risks to soil health from bioenergy systems, and finally discuss measures by which these risks can be minimised, and biomass can be produced while protecting and ideally enhancing soil health. While our focus is on the interaction between bioenergy systems and soil health predominantly at a local scale, we also discuss larger scale issues including the intensification of production and how biomass supply will need to meet developing sustainability systems to meet different social and environmental constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ABARE (2010) Energy in Australia 2010. Australian Bureau of Agricultural and Resource Economics, Canberra

    Google Scholar 

  • Alm M, Cato J, Lundmark L, Myrman J, Raab U, Karlberg M, Karlsson T, Jöhnemark M, Bohnstedt S, Petersson K, Sahlin K, Berggren T, Bäck M, Sahlin M, Linder E, Bäck M, Wagman N, Sahlin M, Lindberg C, Parikka M, Kärrmarck U, Veibäck E, Östensson E (2009) Energy in Sweden: facts and figures. Swedish Energy Agency, Stockholm

    Google Scholar 

  • Anderson-Teixeira KJ, Davis SC, Masters MD, Delucia EH (2009) Changes in soil organic carbon under biofuel crops. Glob Change Biol Bioenergy 1(1):75–96

    CAS  Google Scholar 

  • Baffes J, Haniotis T (2010) Placing the 2006/08 commodity price boom into perspective. The World Bank, Washington

    Google Scholar 

  • Bartle J, Abadi A (2010) Toward sustainable production of second generation bioenergy feedstocks. Energy Fuels 24:2–9

    CAS  Google Scholar 

  • Bartle J, Olsen G, Cooper D, Hobbs T (2007) Scale of biomass production from new woody crops for salinity control in dryland agriculture in Australia. Int J Global Energy Issues 27(2):115–137

    Google Scholar 

  • Bauen A, Berndes G, Junginger M, Londo M, Vuille F, Ball R, Bole T, Chudziak C, Faaij A, Mozaffarian H (2010) Bioenergy – a sustainable and reliable energy source. A review of status and prospects. IEA Bioenergy, Petten

    Google Scholar 

  • Benyon R, England J, Eastham J, Polglase P, White D (2007) Tree water use in forestry compared to other dry-land agricultural crops in the Victorian context. CSIRO, Canberra

    Google Scholar 

  • Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25(1):1–28

    Google Scholar 

  • Berndes G, Hansson J, Egeskog A, Johnsson F (2010) Strategies for 2nd generation biofuels in EU – co-firing to stimulate feedstock supply development and process integration to improve energy efficiency and economic competitiveness. Biomass Bioenergy 34(2):227–236

    CAS  Google Scholar 

  • Bernotat K, Sandberg T (2004) Biomass fired small-scale CHP in Sweden and the Baltic States: a case study on the potential of clustered dwellings. Biomass Bioenergy 27(6):521–530

    Google Scholar 

  • Blanco-Canqui H (2010) Energy crops and their implications on soil and environment. Agron J 102(2):403–419

    CAS  Google Scholar 

  • Blanco-Canqui H, Lal R (2009) Crop residue removal impacts on soil productivity and environmental quality. Crit Rev Plant Sci 28(3):139–163

    CAS  Google Scholar 

  • Bolin B, Sukumar R, Ciais P, Cramer W, Jarvis P, Kheshgi H, Nobre C, Semenov S, Steffen W (2000) Global perspective. In: Watson R, Noble IR, Bolin B, Ravindranath NH, Verado DJ, Dokken DJ (eds) Land use, land-use change, and forestry: a special report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 23–51

    Google Scholar 

  • Borzecka-Walker M, Faber A, Borek R (2008) Evaluation of carbon sequestration in energetic crops (Miscanthus and coppice willow). Int Agrophys 22(3):185–190

    CAS  Google Scholar 

  • Bottcher H, Lindner M (2010) Managing forest plantations for carbon sequestration today and in the future. In: Bauhus J, Van der Meer P, Kanninen M (eds) Ecosystem goods and services from plantation forests. Earthscan, London, pp 43–76

    Google Scholar 

  • Brandão M, Milài Canals L, Clift R (2011) Soil organic carbon changes in the cultivation of energy crops: implications for GHG balances and soil quality for use in LCA. Biomass Bioenergy. doi:10.1016/j.biombioe.2009.10.019:14

    Google Scholar 

  • Buchholz T, Luzadis VA, Volk TA (2009) Sustainability criteria for bioenergy systems: results from an expert survey. J Cleaner Prod 17(suppl 1):s86–s98

    Google Scholar 

  • Capon T, Harris M, Reeson A (2010) Soil carbon sequestration market based instruments (MBIs): a literature review. University of Sydney, Sydney

    Google Scholar 

  • Cayuela ML, Oenema O, Kuikman PJ, Bakker RR, van Groenigen JW (2010) Bioenergy by-products as soil amendments? Implications for carbon sequestration and greenhouse gas emissions. Glob Change Biol Bioenergy 2(4):201–213

    CAS  Google Scholar 

  • Cerri CC, Galdos MV, Maia SMF, Bernoux M, Feigl BJ, Powlson D, Cerri CEP (2011) Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: an examination of existing data. Eur J Soil Sci 62(1):23–28

    CAS  Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manage 51(7):1412–1421

    CAS  Google Scholar 

  • Cherubini F, Ulgiati S (2010) Crop residues as raw materials for biorefinery systems – a LCA case study. Appl Energy 87(1):47–57

    CAS  Google Scholar 

  • Cogle AL, Reddy MVR, Rao KPC, Smith GD, McGarry D, Yule DF (1995) The role of biological practices and the soil biota in management of sealing, crusting and hardsetting soils. In: So HB, Smith GD, Raine SR, Schafer BM, Loch RJ (eds) Sealing, crusting and hardsetting soils: productivity and conservation. Australian Society of Soil Science (Queensland Branch), Brisbane, pp 305–324

    Google Scholar 

  • Coleman MD, Isebrands JG, Tolsted DN, Tolbert VR (2004) Comparing soil carbon of short rotation poplar plantations with agricultural crops and woodlots in North Central United States. Environ Manage 33(Suppl 1):S299–S308

    Google Scholar 

  • Commonwealth of Australia (2010) National greenhouse accounts (NGA) factors. Department of Climate Change and Energy Efficiency, Canberra

    Google Scholar 

  • Cowie AL, Smith P, Johnson D (2006) Does soil carbon loss in biomass production systems negate the greenhouse benefits of bioenergy? Mitig Adapt Strateg Glob Change 11(5/6):979–1002

    Google Scholar 

  • Cramer J, Wissema E, Lammers E, Dijk D, Jager H, van Bennekom S, Breunesse E, Horster R, van Leenders C, Wolters W, Kip H, Stam H, Faaij A, Kwant K (2006) Criteria for sustainable biomass production. Project group ‘Sustainable production of biomass’ in the Energy Transition Task Force, Amsterdam

    Google Scholar 

  • Crosbie RS, Hughes JD, Friend J, Baldwin BJ (2007) Monitoring the hydrological impact of land use change in a small agricultural catchment affected by dryland salinity in central NSW, Australia. Agric Water Manage 88(1/3):43–53

    Google Scholar 

  • Dalal RC, Chan KY (2001) Soil organic matter in rainfed cropping systems of the Australian cereal belt. Aust J Soil Res 39:435–464

    CAS  Google Scholar 

  • Dale BE, Bals BD, Kim S, Eranki P (2010) Biofuels done right: land efficient animal feeds enable large environmental and energy benefits. Environ Sci Technol 44(22):8385–8389

    PubMed  CAS  Google Scholar 

  • Dawson JJC, Smith P (2007) Carbon losses from soil and its consequences for land-use management. Sci Total Environ 382(2–3):165–190

    PubMed  CAS  Google Scholar 

  • Delucchi MA (2010) Impacts of biofuels on climate change, water use, and land use. Ann NY Acad Sci 1195:28–45

    PubMed  CAS  Google Scholar 

  • Delzeit R, Holm-Muller K (2009) Steps to discern sustainability criteria for a certification scheme of bioethanol in Brazil: approach and difficulties. Energy 34(5):662–668

    CAS  Google Scholar 

  • Dickmann DI (2006) Silviculture and biology of short-rotation woody crops in temperate regions: then and now. Biomass Bioenergy 30(8/9):696–705

    Google Scholar 

  • Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15(1):3–11

    Google Scholar 

  • Duer H, Christensen PO (2010) Socio-economic aspects of different biofuel development pathways. Biomass Bioenergy 34(2):237–243

    Google Scholar 

  • European Parliament (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/E. Official J Eur Union L 140:47

    Google Scholar 

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235–1238

    PubMed  CAS  Google Scholar 

  • Fischer G, Hizsnyik E, Prieler S, Shah M, van Velthuizen H (2009) Biofuels and food security. International Institute for Applied Systems Analysis, Vienna

    Google Scholar 

  • Fischer G, Prieler S, Velthuizen Hv, Berndes G, Faaij A, Londo M, Wit Md (2010) Biofuel production potentials in Europe: sustainable use of cultivated land and pastures, Part II: Land use scenarios. (Special Issue: a roadmap for biofuels in Europe.). Biomass Bioenergy 34(2):173–187

    Google Scholar 

  • Florentinus A, Hamelinck C, de Lint S, van Iersel S (2008) Worldwide potential of aquatic biomass. Ecofys, Utrecht

    Google Scholar 

  • Florin MV, Bunting C (2009) Risk governance guidelines for bioenergy policies. J Cleaner Prod 17(suppl 1):S106–S108

    Google Scholar 

  • Forrester DI, Bauhus J, Cowie AL (2005) On the success and failure of mixed-species tree plantations: lessons learned from a model system of Eucalyptus globulus and Acacia mearnsii. For Ecol Manage 209(1–2):147–155

    Google Scholar 

  • Friedlingstein P (2008) A steep road to climate stabilization. Nature 451(7176):297–298

    PubMed  CAS  Google Scholar 

  • Fritsche UR, Hennenberg KJ, Hermann A, Hünecke K, Herrera R, Fehrenbach H, Roth E, Hennecke A, Giegrich J (2010) Development of strategies and sustainability standards for the certification of biomass for international trade. Federal Environment Agency, Dessau

    Google Scholar 

  • Froger E, Paz A, Vissers P (2010) Selection of a sustainability standard for pilot assessments of Jatropha producers in Mozambique. Partners for Innovation, Amsterdam

    Google Scholar 

  • Fung PYH, Kirschbaum MUF, Raison RJ, Stucley C (2002) The potential for bioenergy production from Australian forests, its contribution to national greenhouse targets and recent developments in conversion processes. Biomass Bioenergy 22(4):223–236

    Google Scholar 

  • Galdos MV, Cerri CC, Cerri CEP (2009) Soil carbon stocks under burned and unburned sugarcane in Brazil. Geoderma 153(3/4):347–352

    CAS  Google Scholar 

  • Gregg JS, Izaurralde RC (2010) Effect of crop residue harvest on long-term crop yield, soil erosion and nutrient balance: trade-offs for a sustainable bioenergy feedstock. Biofuels 1(1):69–83

    CAS  Google Scholar 

  • Gregory JM, Jones CD, Cadule P, Friedlingstein P (2009) Quantifying carbon cycle feedbacks. J Climate 22(19):5232–5250

    Google Scholar 

  • Grigal DF (2000) Effects of extensive forest management on soil productivity. For Ecol Manage 138(1–3):167–185

    Google Scholar 

  • Grove TS, O’Connell AM, Mendham D, Barrow NJ, Rance SJ (2001) Sustaining the productivity of tree crops on agricultural land in South-Western Australia. Rural Industries Research & Development Corporation, Canberra

    Google Scholar 

  • Halleux H, Lassaux S, Renzoni R, Germain A (2008) Comparative life cycle assessment of two biofuels ethanol from sugar beet and rapeseed methyl ester. Int J Life Cycle Assess 13(3):184–190

    CAS  Google Scholar 

  • Hansson J, Berndes G (2009) Future bioenergy trade in the EU: modelling trading options from a cost-effectiveness perspective. J Cleaner Prod 17(suppl 1):s27–s36

    Google Scholar 

  • Hennenberg KJ, Dragisic C, Haye S, Hewson J, Semroc B, Savy C, Wiegmann K, Fehrenbach H, Fritsche UR (2010) The power of bioenergy-related standards to protect biodiversity. Conserv Biol 24(2):412–423

    PubMed  CAS  Google Scholar 

  • Hobbs TJ, Bartle J, Bennell M, George BH (2009) Prioritisation of regional woody crop industries. In: Hobbs T (ed) Regional industry potential for woody biomass crops in lower rainfall southern Australia. Rural Industries Research & Development Corporation, Canberra, pp 5–38

    Google Scholar 

  • Holford ICR (1997) Soil phosphorus: its measurement, and its uptake by plants. Aust J Soil Res 35:227–240

    CAS  Google Scholar 

  • Hoogwijk M, Faaij A, Bd V, Turkenburg W (2009) Exploration of regional and global cost-supply curves of biomass energy from short-rotation crops at abandoned cropland and rest land under four IPCC SRES land-use scenarios. Biomass Bioenergy 33(1):26–43

    Google Scholar 

  • Integrated Sustainability Analysis (2006) Life-cycle energy balance and greenhouse gas emissions of nuclear energy in Australia. The University of Sydney, Sydney

    Google Scholar 

  • International Energy Agency (2009) World energy outlook 2009. OECD/IEA, Paris

    Google Scholar 

  • IPCC (2001) Working Group 1: the scientific basis. Intergovernmental Panel on Climate Change, Cambridge

    Google Scholar 

  • Jackson RB, Jobbagy EG, Avissar R, Roy SB, Barrett DJ, Cook CW, Farley KA, le Maitre DC, McCarl BA, Murray BC (2005) Trading water for carbon with biological carbon sequestration. Science 310(5756):1944–1947

    PubMed  CAS  Google Scholar 

  • Jalali M (2007) Site-specific potassium application based on the fertilizer potassium availability index of soil. Precision Agric 8(4–5):199–211

    Google Scholar 

  • Jongschaap REE, Corre WJ, Bindrabin PS, Brandanberg WA (2007) Claims and facts on Jatropha curcas L. Plant Research International B.V, Wageningen

    Google Scholar 

  • Khan SA, Mulvaney RL, Ellsworth TR, Boast CW (2007) The myth of nitrogen fertilization for soil carbon sequestration. J Environ Qual 36(6):1821–1832

    PubMed  CAS  Google Scholar 

  • Kirschbaum MUF, Guo LB, Gifford RM (2008) Why does rainfall affect the trend in soil carbon after converting pastures to forests? A possible explanation based on nitrogen dynamics. For Ecol Manage 255(7):2990–3000

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123(1–2):1–22

    CAS  Google Scholar 

  • Lal R, Follett RF, Kimble JM (2003) Achieving soil carbon sequestration in the United States: a challenge to the policy makers. Soil Sci 168(12):827–845

    CAS  Google Scholar 

  • Lasch P, Kollas C, Rock J, Suckow F (2010) Potentials and impacts of short-rotation coppice plantation with aspen in Eastern Germany under conditions of climate change. Reg Environ Change 10(2):83–94

    Google Scholar 

  • Lattimore B, Smith CT, Titus BD, Stupak I, Egnell G (2009) Environmental factors in woodfuel production: opportunities, risks, and criteria and indicators for sustainable practices. Biomass Bioenergy 33(10):1321–1342

    Google Scholar 

  • Laurance WF, Koh LP, Butler R, Sodhi NS, Bradshaw CJA, Neidel JD, Consunji H, Mateo Vega J (2010) Improving the performance of the roundtable on sustainable palm oil for nature conservation. Conserv Biol 24(2):377–381

    PubMed  Google Scholar 

  • Lewandowski I, Faaij APC (2006) Steps towards the development of a certification system for sustainable bio-energy trade. Biomass Bioenergy 30(2):83–104

    Google Scholar 

  • Liebig MA, Johnson HA, Hanson JD, Frank AB (2005) Soil carbon under switchgrass stands and cultivated cropland. Biomass Bioenergy 28(4):347–354

    CAS  Google Scholar 

  • Luyssaert S, Schulze ED, Borner A, Knohl A, Hessenmoller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455(7210):213–215

    PubMed  CAS  Google Scholar 

  • Merino A, Fernandez-Lopez A, Solla-Gullon F, Miguel Edeso J (2004) Soil changes and tree growth in intensively managed Pinus radiata in northern Spain. For Ecol Manage 196(2/3):393–404

    Google Scholar 

  • Morton DC, DeFries RS, Shimabukuro YE, Anderson LO, Arai E, del Bon Espirito-Santo F, Freitas R, Morisette J (2006) Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc Natl Acad Sci USA 103(39):14637–14641

    PubMed  CAS  Google Scholar 

  • Muller A (2009) Sustainable agriculture and the production of biomass for energy use. Clim Change 94(3):319–331

    CAS  Google Scholar 

  • New South Wales (2003) Native Vegetation Act 2003. Parliament of New South Wales, Sydney

    Google Scholar 

  • New South Wales (2007) Biofuels Act 2007. Parliament of New South Wales, Sydney

    Google Scholar 

  • O’Connell D, Braid A, Raison J, Handberg K, Cowie A, Rodriguez L, George BH (2009) Sustainable production of bioenergy: a review of global bioenergy sustainability frameworks and assessment system. Rural Industries Research and Development Corporation, Canberra

    Google Scholar 

  • Parliament E (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/E. Off J Eur Union L 140:47

    Google Scholar 

  • Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manage 168(1–3):241–257

    Google Scholar 

  • Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. U.S. Department of Energy and U.S Department of Agriculture, Oak Ridge

    Google Scholar 

  • Pimentel D (2006) Soil erosion: a food and environmental threat. Environ Dev Sustain 8(1):119–137

    Google Scholar 

  • Pimentel D (2009) Biofuel food disasters and cellulosic ethanol problems. Bull Sci Technol Soc 29(3):205–212

    Google Scholar 

  • Pimentel D, Patzek T (2007) Ethanol production: energy and economic issues related to U.S. and Brazilian sugarcane. Nat Resour Res 16(3):235–242

    CAS  Google Scholar 

  • Pimentel D, Marklein A, Toth M, Karpoff M, Paul G, McCormack R, Kyriazis J, Krueger T (2008) Biofuel impacts on world food supply: use of fossil fuel, land and water resources. Energies 1(2):41–78

    Google Scholar 

  • Pimentel D, Marklein A, Toth MA, Karpoff MN, Paul GS, McCormack R, Kyriazis J, Krueger T (2009) Food versus biofuels: environmental and economic costs. Hum Ecol 37(1):1–12

    Google Scholar 

  • Pingintha N, Leclerc MY, Beasley JP Jr, Zhang G, Senthong C (2010) Assessment of the soil CO2 gradient method for soil CO2 efflux measurements: comparison of six models in the calculation of the relative gas diffusion coefficient. Tellus Ser B 62(1):47–58

    Google Scholar 

  • Pinheiro EFM, Lima E, Ceddia MB, Urquiaga S, Alves BJR, Boddey RM (2010) Impact of pre-harvest burning versus trash conservation on soil carbon and nitrogen stocks on a sugarcane plantation in the Brazilian Atlantic forest region. Plant Soil 333(1/2):71–80

    Google Scholar 

  • Plevin RJ, O’Hare M, Jones AD, Torn MS, Gibbs HK (2010) Greenhouse gas emissions from biofuels’ indirect land use change are uncertain but may be much greater than previously estimated. Environ Sci Technol 44(21):8015–8021

    PubMed  CAS  Google Scholar 

  • Pritchard SG (2011) Soil organisms and global climate change. Plant Pathol 60(1):82–99

    Google Scholar 

  • Raison RJ, Khanna PK (2011) Possible impacts of climate change on forest soil health. In: Singh B, Cowie AL, Chan KY (eds) Soil health and climate change. Springer, Heidelberg

    Google Scholar 

  • Raunikar R, Buongiorno J, Turner JA, Zhu SS (2010) Global outlook for wood and forests with the bioenergy demand implied by scenarios of the Intergovernmental Panel on Climate Change. For Policy Econ 12(1):48–56

    Google Scholar 

  • Reinhard J, Zah R (2009) Global environmental consequences of increased biodiesel consumption in Switzerland: consequential life cycle assessment. J Cleaner Prod 17(suppl 1):S46–S56

    CAS  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57(5):1017–1023

    PubMed  CAS  Google Scholar 

  • Ribeiro SK, Kobayashi S, Beuthe M, Gasca J, Greene D, Lee DS, Muromachi Y, Newton PJ, Plotkin S, Sperling D, Wit R, Zhou PJ, Hata H, Sims R, Skjolsvik KO (2007) Transport and its infrastructure. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 64

    Google Scholar 

  • Rice CW (2005) Carbon cycle in soils: dynamics and management. In: Daniel H (ed) Encyclopedia of soils in the environment. Elsevier, Oxford, pp 164–170

    Google Scholar 

  • Richard TL (2010) Challenges in scaling up biofuels infrastructure. Science 329(5993):793–796

    PubMed  CAS  Google Scholar 

  • Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M (2010) The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiol 30(9):1192–1208

    PubMed  Google Scholar 

  • Robertson FA, Thorburn PJ (2007) Management of sugarcane harvest residues: consequences for soil carbon and nitrogen. Aust J Soil Res 45(1):13–23

    CAS  Google Scholar 

  • Roundtable on Sustainable Biofuels (2009) RSB principles and criteria for sustainable biofuel production. Ecole Polytechnique Federale De Lausanne, Lausanne

    Google Scholar 

  • Sartori F, Lal R, Ebinger MH, Eaton JA (2007) Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon, USA. Agric Ecosyst Environ 122(3):325–339

    CAS  Google Scholar 

  • Schade C, Pimentel D (2010) Population crash: prospects for famine in the twenty-first century. Environ Dev Sustain 12(2):245–262

    Google Scholar 

  • Schlamadinger B, Marland G (1996) The role of forest and bioenergy strategies in the global carbon cycle. Biomass Bioenergy 10(5/6):275–300

    CAS  Google Scholar 

  • Schlamadinger B, Bird N, Johns T, Brown S, Canadell J, Ciccarese L, Dutschke M, Fiedler J, Fischlin A, Fearnside P, Forner C, Freibauer A, Frumhoff P, Hoehne N, Kirschbaum MUF, Labat A, Marland G, Michaelowa A, Montanarella L, Moutinho P, Murdiyarso D, Pena N, Pingoud K, Rakonczay Z, Rametsteiner E, Rock J (2007) A synopsis of land use, land-use change and forestry (LULUCF) under the Kyoto Protocol and Marrakech Accords. (Options for including agriculture and forestry activities in a post-2012 international climate agreement). Environ Sci Policy 10(4):271–282

    Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong FX, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240

    PubMed  CAS  Google Scholar 

  • Sims REH, Schock RN, Adegbululgbe A, Fenhann J, Konstantinaviciute I, Moomaw W, Nimir HB, Schlamadinger B, Torres-Martínez J, Turner C, Uchiyama Y, Vuori SJV, Wamukonya N, Zhang X (2007) Energy supply. Cambridge University Press, Cambridge

    Google Scholar 

  • Singh BP, Cowie A (2010) The mean turnover time of biochar in soil varies depending on biomass source and pyrolysis temperature. In: 19th world congress of soil science, soil solutions for a changing world, Brisbane, 1–6 Aug 2010. http://www.iuss.org/19th%20WCSS/symposium/pdf/0326.pdf. Accessed 1 December 2010

  • Smolander A, Kitunen V, Tamminen P, Kukkola M (2010) Removal of logging residue in Norway spruce thinning stands: long-term changes in organic layer properties. Soil Biol Biochem 42(8):1222–1228

    CAS  Google Scholar 

  • Solomon BD (2010) Biofuels and sustainability. Ann NY Acad Sci 1185:119–134

    PubMed  Google Scholar 

  • Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewitson B, Hoskins BJ, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker TF, Whetton P, Wood RA, Wratt D (2007) Technical summary. Cambridge

    Google Scholar 

  • Sparovek G, Berndes G, Egeskog A, de Freitas FLM, Gustafsson S, Hansson J (2007) Sugarcane ethanol production in Brazil: an expansion model sensitive to socioeconomic and environmental concerns. Biofuels, Bioprod Biorefin 1(4):270–282

    CAS  Google Scholar 

  • Sparovek G, Barretto A, Berndes G, Martins S, Maule R (2009) Environmental, land-use and economic implications of Brazilian sugarcane expansion 1996–2006. Mitig Adapt Strateg Glob Change 14(3):285–298

    Google Scholar 

  • Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosyst 74(3):207–228

    CAS  Google Scholar 

  • Stern NH (2007) The economics of climate change: the Stern review. Cambridge University Press, Cambridge

    Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677

    PubMed  CAS  Google Scholar 

  • Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314(5805):1598–1600

    PubMed  CAS  Google Scholar 

  • Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels – the food, energy, and environment trilemma. Science 325(5938):270–271

    PubMed  CAS  Google Scholar 

  • Turner J, Lambert M (2000) Change in organic carbon in forest plantation soils in eastern Australia. For Ecol Manage 133(3):231–247

    Google Scholar 

  • Tyner WE, Taheripour F, Zhuang Q, Birur D, Baldos U (2010) Land use changes and consequent CO2 emissions due to US corn ethanol production: a comprehensive analysis. Purdue University, West Lafayette

    Google Scholar 

  • United Nations (2008) Partnerships for sustainable development. United Nations, Rome

    Google Scholar 

  • Uslu A, Faaij APC, Bergman PCA (2008) Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy 33(8):1206–1223

    Google Scholar 

  • van Dam J, Junginger M, Faaij A, Jürgens I, Best G, Fritsche U (2008) Overview of recent developments in sustainable biomass certification. Biomass Bioenergy 32(8):749–780

    Google Scholar 

  • van Dam J, Junginger M, Faaij APC (2010) From the global efforts on certification of bioenergy towards an integrated approach based on sustainable land use planning. Renewable Sustainable Energy Rev 14(9):2445–2472

    Google Scholar 

  • Vargas Gil S, Becker A, Oddino C, Zuza M, Marinelli A, March G (2009) Field trial assessment of biological, chemical, and physical responses of soil to tillage intensity, fertilization, and grazing. Environ Manage 44(2):378–386

    PubMed  Google Scholar 

  • Vertessy RA, Zhang L, Dawes W (2003) Plantations, river flows and river salinity. Aust Forest 66:55–61

    Google Scholar 

  • Vis MW, Vos J, van den Berg D (2008) Sustainability criteria and certification systems for biomass production. Biomass Technology Group, Enschede

    Google Scholar 

  • Vivid Economics (2010) The implicit price of carbon in the electricity sector of six major economies. The Climate Institute, Sydney

    Google Scholar 

  • Walmsley JD, Godbold DL (2010) Stump harvesting for bioenergy – a review of the environmental Impacts. Forestry 83(1):17–38

    Google Scholar 

  • Wang H, Brown SL, Magesan GN, Slade AH, Quintern M, Clinton PW, Payn TW (2008) Technological options for the management of biosolids. Environ Sci Pollut Res 15(4):308–317

    Google Scholar 

  • Warnock D, Lehmann J, Kuyper T, Rillig M (2007) Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant Soil 300(1):9–20

    CAS  Google Scholar 

  • Wicke B, Sikkema R, Dornburg V, Faaij A (2011) Exploring land use changes and the role of palm oil production in Indonesia and Malaysia. Land Use Policy 28(1):193–206

    Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329(5993):796–799

    PubMed  CAS  Google Scholar 

  • Wit MD, Faaij A (2010) European biomass resource potential and costs. Biomass Bioenergy 34(2):188–202

    Google Scholar 

  • Wood S, Cowie AL (2004) A review of greenhouse gas emission factors for fertiliser production. Task 38. IEA Bioenergy, Sydney

    Google Scholar 

  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1(5):56

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan H. George .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

George, B.H., Cowie, A.L. (2011). Bioenergy Systems, Soil Health and Climate Change. In: Singh, B., Cowie, A., Chan, K. (eds) Soil Health and Climate Change. Soil Biology, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20256-8_16

Download citation

Publish with us

Policies and ethics