Skip to main content

Rehabilitated Mine-Site Management, Soil Health and Climate Change

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 29))

Abstract

This chapter discusses the current approaches to measuring rehabilitation success and considers how rehabilitation practices can impact on soil health using two industrial-scale case studies: (1) jarrah (Eucalyptus marginata) forest rehabilitation following bauxite mining for alumina, and (2) rehabilitation of bauxite-processing residue storage areas in Western Australia. The strategies used during rehabilitation of mine-sites or other highly disturbed environments play a large role in shaping the attributes of the developing ecosystem and thus its long-term sustainability. Rehabilitation practices can alter the aboveground plant species composition, diversity and density as well as belowground soil properties and functions. Rehabilitation strategies at the design and initial implementation stage, as well as the management of existing sites, can be modified to ensure maximum adaptive capacity and long-term sustainability of the rehabilitated ecosystem in a changing climate. The factors that require consideration to achieve these aims are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott I, Loneragan WA (1986) Ecology of Jarrah (Eucalyptus marginata) in the northern Jarrah forest of Western Australia. Department of Conservation and Land Management Bulletin, Perth

    Google Scholar 

  • Balser TC, Firestone MK (2005) Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry 73:395–415

    Article  CAS  Google Scholar 

  • Banning NC, Phillips IR, Jones DL, Murphy DV (2011) Development of microbial diversity and functional potential in bauxite residue sand under rehabilitation. Restor Ecol 19:78–87

    Google Scholar 

  • Banning NC, Murphy DV (2008) Effect of heat-induced disturbance on microbial biomass and activity in forest soil and the relationship between disturbance effects and microbial community structure. Appl Soil Ecol 40:109–119

    Article  Google Scholar 

  • Banning NC, Willers J, Grant CD, Grigg A, Murphy DV (2007) Combined thinning and burning impacts soil N cycling in rehabilitation jarrah (Eucalyptus marginata) forest. In: Xu ZH et al (eds) The proceedings of the international symposium on forest soils and ecosystem health. Centre for Forestry and Horticultural Research, Griffith University, Brisbane, pp 13–14

    Google Scholar 

  • Banning NC, Grant CD, Jones DL, Murphy DV (2008) Recovery of soil organic matter, organic matter turnover and nitrogen cycling in a post-mining forest rehabilitation chronosequence. Soil Biol Biochem 40:2021–2031

    Article  CAS  Google Scholar 

  • Bardgett RD (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, New York

    Google Scholar 

  • Barton L, Kiese R, Gatter D, Butterbach-Bahl K, Buck R, Hinz C, Murphy DV (2008) Nitrous oxide emissions from a cropped soil in a semi-arid climate. Glob Chang Biol 14:177–192

    Google Scholar 

  • Bauhus J, Khanna P, Raison RJ (1993) The effect of fire on carbon and nitrogen mineralization and nitrification in an Australian forest soil. Aust J Soil Res 31:621–639

    Article  CAS  Google Scholar 

  • Bell LC (2001) Establishment of native ecosystems after mining -Australian experience across diverse biogeographic zones. Ecol Eng 17:179–186

    Article  Google Scholar 

  • Bell DT, Heddle EM (1989) Floristic, morphologic and vegetational diversity. In: Dell B et al (eds) The Jarrah Forest: a complex mediterranean ecosystem. Kluwer Academic, Dordrecht

    Google Scholar 

  • Bell DT, Wilkins CF, Moezel PG, Ward SC (1993) Alkalinity tolerance of woody species used in bauxite waste rehabilitation, Western Australia. Restor Ecol 1:51–58

    Article  Google Scholar 

  • Cairns J Jr (2000) Setting ecological restoration goals for technical feasibility and scientific validity. Ecol Eng 15:171–180

    Article  Google Scholar 

  • Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10

    Article  PubMed  Google Scholar 

  • Chapin FS, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175

    Article  Google Scholar 

  • Charles SP, Bates BC, Whetton PH, Hughes JP (1999) Validation of downscaling models for changed climate conditions: case study of southwestern Australia. Climate Res 12:1–14

    Article  Google Scholar 

  • Chen C, Phillips I, Wei L, Xu Z (2010) Behaviour and dynamics of di-ammonium phosphate in bauxite processing residue sand in Western Australia – I. NH3 volatilisation and residual nitrogen availability. Environ Sci Pollut Res Int 17:1098–1109

    Article  PubMed  CAS  Google Scholar 

  • Clode PL, Kilburn MR, Jones DL, Stockdale EA, Cliff JB, Herrmann AM, Murphy DV (2009) In situ mapping of nutrient uptake in the rhizosphere using nanoscale secondary ion mass spectrometry. Plant Physiol 151:1751–1757

    Article  PubMed  CAS  Google Scholar 

  • Colquhoun IJ, Kerp NL (2007) Minimizing the spread of a soil-borne plant pathogen during a large-scale mining operation. Restor Ecol 15:S85–S93

    Article  Google Scholar 

  • Cookson WR, Abaye DA, Marschner P, Murphy DV, Stockdale EA, Goulding KWT (2005) The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure. Soil Biol Biochem 37:1726–1737

    Article  CAS  Google Scholar 

  • Cookson WR, Osman M, Marschner P, Abaye DA, Clark I, Murphy DV, Stockdale EA, Watson CA (2007) Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature. Soil Biol Biochem 39:744–756

    Article  CAS  Google Scholar 

  • Cookson WR, O’Donnell AJ, Grant CD, Grierson PF, Murphy DV (2008) Impact of ecosystem management on microbial community level physiological profiles of post-mining forest rehabilitation. Microb Ecol 55:321–332

    Article  PubMed  CAS  Google Scholar 

  • Courtney RG, Timpson JP (2004) Nutrient status of vegetation grown in alkaline bauxite processing residue amended with gypsum and thermally dried sewage sludge – a two year field study. Plant Soil 266:187–194

    Article  CAS  Google Scholar 

  • Courtney R, Mullen G, Harrington T (2009) An evaluation of revegetation success on bauxite residue. Restor Ecol 17:350–358

    Article  Google Scholar 

  • Croton JT, Reed AJ (2007) Hydrology and bauxite mining on the Darling Plateau. Restor Ecol 15:S40–S47

    Article  Google Scholar 

  • de Groot RS, Wilson MA, Boumans RMJ (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41:393–408

    Article  Google Scholar 

  • Degens BP (1998) Microbial functional diversity can be influenced by the addition of simple organic substrates to soil. Soil Biol Biochem 30:1981–1988

    Article  CAS  Google Scholar 

  • Degens BP, Schipper LA, Sparling GP, Duncan LC (2001) Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? Soil Biol Biochem 33:1143–1153

    Article  CAS  Google Scholar 

  • Dell B, Havel JJ, Malajczuk N (1989) The Jarrah forest: a complex mediterranean ecosystem. Kluwer Academic, Dordrecht

    Google Scholar 

  • Eastham J, Morald T, Aylmore P (2006) Effective nutrient sources for plant growth on bauxite residue. Water Air Soil Pollut 176:5–19

    Article  CAS  Google Scholar 

  • Evans J, Schreider S (2002) Hydrological impacts of climate change on inflows to Perth, Australia. Clim Change 55:361–393

    Article  Google Scholar 

  • Farrell M, Healey JR, Godbold DL, Nason MA, Tandy S, Jones DL (2011) Modification of fertility of soil materials for restoration of acid grassland habitat. Restor Ecol (in press)

    Google Scholar 

  • Fey M, Kaur N, Phillips I (2010) Inorganic pathway to soil-like conditions in alkaline residue from bauxite refining. 19th World Congress of Soil Science. International Union of Soil Sciences, Brisbane

    Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631

    Article  PubMed  CAS  Google Scholar 

  • Fitter AH, Gilligan CA, Hollingworth K, Kleczkowski A, Twyman RM, Pitchford JW (2005) Biodiversity and ecosystem function in soil. Funct Ecol 19:369–377

    Article  Google Scholar 

  • Gardner JH, Bell DT (2007) Bauxite mining restoration by Alcoa World Alumina Australia in Western Australia: social, political, historical, and environmental contexts. Restor Ecol 15:S3–S10

    Article  Google Scholar 

  • Girvan MS, Campbell CD, Killham K, Prosser JI, Glover LA (2005) Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol 7:301–313

    Article  PubMed  CAS  Google Scholar 

  • Gleeson D, McDermott F, Clipson N (2006) Structural diversity of bacterial communities in a heavy metal mineralized granite outcrop. Environ Microbiol 8:383–393

    Article  PubMed  CAS  Google Scholar 

  • Glen M, Bougher NL, Colquhoun IJ, Vlahos S, Loneragan WA, O’Brien PA, Hardy GESJ (2008) Ectomycorrhizal fungal communities of rehabilitated bauxite mines and adjacent, natural jarrah forest in Western Australia. For Ecol Manage 255:214–225

    Article  Google Scholar 

  • Gonzalez-Perez JA, Gonzalez-Vila FJ, Almendros G, Knicker H (2004) The effect of fire on soil organic matter–a review. Environ Int 30:855–870

    Article  PubMed  CAS  Google Scholar 

  • Grant CD (2006) State-and-transition successional model for bauxite mining rehabilitation in the jarrah forest of Western Australia. Restor Ecol 14:28–37

    Article  Google Scholar 

  • Grant CD, Norman MA, Smith MA (2007) Fire and silvicultural management of restored bauxite mines in Western Australia. Restor Ecol 15:S127–S136

    Article  Google Scholar 

  • Grayston SJ, Campbell CD, Bardgett RD, Mawdsley JL, Clegg CD, Ritz K, Griffiths BS, Rodwell JS, Edwards SJ, Davies WJ, Elston DJ, Millard P (2004) Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Appl Soil Ecol 25:63–84

    Article  Google Scholar 

  • Grigg AH, Norman MA, Grant CD (2010) Prescribed burning of thinning slash in regrowth stands of jarrah (Eucalyptus marginata) following bauxite mining in south-west Australia. Int J Wildland Fire 19:737–745

    Google Scholar 

  • Gwenzi W, Veneklaas EJ, Phillips I, Bleby TM, Hinz C (2009) Spatial distribution of fine roots on a rehabilitated bauxite residue disposal area in Western Australia. In: Fourie AB, Tibbett M (eds) Mine closure 2009. Australian Centre for Geomechanics, Perth, pp 317–327

    Google Scholar 

  • Hackl E, Zechmeister-Boltenstern S, Bodrossy L, Sessitsch A (2004) Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils. Appl Environ Microbiol 70:5057–5065

    Article  PubMed  CAS  Google Scholar 

  • Hamman ST, Burke IC, Stromberger ME (2007) Relationships between microbial community structure and soil environmental conditions in a recently burned system. Soil Biol Biochem 39:1703–1711

    Article  CAS  Google Scholar 

  • Harris JA (2003) Measurements of the soil microbial community for estimating the success of restoration. Eur J Soil Sci 54:801–808

    Article  Google Scholar 

  • Harris JA, Grogan P, Hobbs RJ (2005) Restoration ecology and the role of soil biodiversity. In: Bardgett RD et al (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, pp 319–342

    Chapter  Google Scholar 

  • Harris JA, Hobbs RJ, Higgs E, Aronson J (2006) Ecological restoration and global climate change. Restor Ecol 14:170–176

    Article  Google Scholar 

  • Havel J (1975) Site-vegetation mapping in the norther jarrah forest (Darling Range). 1. Definition of site-vegetation types. Bulletin 86. Forest Department Western Australia

    Google Scholar 

  • Hennessy K, Lucas C, Nicholls N, Bathols J, Suppiah R, Ricketts J (2005) Climate change impacts on fire weather in South-eastern Australia. CSIRO Marine and Atmospheric Research, Aspendale

    Google Scholar 

  • Hingston FJ, Malajczuk N, Grove TS (1982) Acetylene reduction (N2-fixation) by jarrah forest legumes following fire and phosphate application. J Appl Ecol 19:631–645

    Article  Google Scholar 

  • Hobbs RJ, Harris JA (2001) Restoration ecology: repairing the earth’s ecosystems in the new millennium. Restor Ecol 9:239–246

    Article  Google Scholar 

  • Hobbs RJ, Norton DA (1996) Towards a conceptual framework for restoration ecology. Restor Ecol 4:93–110

    Article  Google Scholar 

  • Ingram JSI, Fernandes ECM (2001) Managing carbon sequestration in soils: concepts and terminology. Agric Ecosyst Environ 87:111–117

    Article  Google Scholar 

  • Jasper DA (2007) Beneficial soil microorganisms of the jarrah forest and their recovery in bauxite mine restoration in Southwestern Australia. Restor Ecol 15:S74–S84

    Article  Google Scholar 

  • Jasper D, Lockley I, Ward S, White A (2000) Current approaches and future challenges for rehabilitation of bauxite residue. In: Bell RW, Brion A (Eds) Proceedings of Remade Lands 2000, International Conference on the Remediation and Management of Degraded Lands, 30th Nov.-2nd Dec., Fremantle, Australia, pp 71–72

    Google Scholar 

  • Jenkinson DS, Adams DE, Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351:304–306

    Article  CAS  Google Scholar 

  • Jones BEH, Haynes RJ, Phillips IR (2010) Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties. J Environ Manage 91:2281–2288

    Google Scholar 

  • Killham K (1994) Soil ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Koch J (1987) Nitrogen accumulation in a rehabilitated bauxite-mined area in the Darling Range, Western Australia. Aust For Res 17:59–72

    Google Scholar 

  • Koch JM (2007) Alcoa’s mining and restoration process in South Western Australia. Restor Ecol 15:S11–S16

    Article  Google Scholar 

  • Koch JM, Hobbs RJ (2007) Synthesis: is Alcoa successfully restoring a jarrah forest ecosystem after bauxite mining in Western Australia? Restor Ecol 15:S137–S144

    Article  Google Scholar 

  • Koch JM, Samsa GP (2007) Restoring Jarrah forest trees after bauxite mining in Western Australia. Restor Ecol 15:S17–S25

    Article  Google Scholar 

  • Koch JM, Ward SC (2005) Thirteen year jarrah (Eucalyptus marginata) growth on restored bauxite mines in south-west Australia. Aust For 68:176–185

    Google Scholar 

  • Krishna P, Sudhakara Reddy M, Patnaik SK (2005) Aspergillus tubingensis reduces the pH of the bauxite residue (red mud) amended soils. Water Air Soil Pollut 167:201

    Article  CAS  Google Scholar 

  • Lalor BM, Cookson WR, Murphy DV (2007) Comparison of two methods that assess soil community level physiological profiles in a forest ecosystem. Soil Biol Biochem 39:454–462

    Article  CAS  Google Scholar 

  • Li J, Duggin JA, Loneragan WA, Grant CD (2006) Grassland responses to multiple disturbances on the New England Tablelands in NSW, Australia. Plant Ecol 193:39–57

    Article  Google Scholar 

  • Ludwig JA, Tongway DJ, Bastin GN, James CD (2004) Monitoring ecological indicators of rangeland functional integrity and their relation to biodiversity at local to regional scales. Austral Ecol 29:108–120

    Article  Google Scholar 

  • McArthur WM (2004) Reference soils of south-western Australia. Department of Agriculture, Perth

    Google Scholar 

  • Morley S, Grant C, Hobbs R, Cramer V (2004) Long-term impact of prescribed burning on the nutrient status and fuel loads of rehabilitated bauxite mines in Western Australia. For Ecol Manage 190:227–239

    Article  Google Scholar 

  • Mpelasoka F, Hennessy K, Jones R, Bates B (2008) Comparison of suitable drought indices for climate change impacts assessment over Australia towards resource management. Int J Climatol 28:1283–1292

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Neher D (1999) Soil community composition and ecosystem processes: comparing agricultural ecosystems with natural ecosystems. Agroforest Syst 45:159–185

    Article  Google Scholar 

  • Norman MA, Koch JM, Grant CD, Morald TK, Ward SC (2006) Vegetation succession after bauxite mining in Western Australia. Restor Ecol 14:278–288

    Article  Google Scholar 

  • O’Connell AM (1997) Decomposition of slash residues in thinned regrowth eucalypt forest in Western Australia. J Appl Ecol 34:111–122

    Article  Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    Article  PubMed  CAS  Google Scholar 

  • Odum WE, Odum EP, Odum HT (1995) Nature’s pulsing paradigm. Estuaries 18:547–555

    Article  Google Scholar 

  • Orwin KH, Wardle DA, Greenfield LG (2006) Ecological consequences of carbon substrate identity and diversity in a laboratory study. Ecology 97:580–593

    Article  Google Scholar 

  • Outback Ecology (2006) Coastal soils and vegetation communities as analogues for bauxite residue rehabilitation. Unpublished report for Alcoa of Australia, March 2006

    Google Scholar 

  • Rice KJ, Emery NC (2003) Managing microevolution: restoration in the face of global change. Front Ecol Environ 1:469–478

    Article  Google Scholar 

  • Sawada Y (1996) Indices of microbial biomass and activity to assess minesite rehabilitation, 3rd International and the 21st Annual Minerals Council of Australia Environmental Workshop. Vol. 1. Minerals Council of Australia, Newcastle, Australia, pp 223–236

    Google Scholar 

  • Shea SR, McCormick J, Portlock CC (1979) The effect of fires on regeneration of leguminous species in the northern Jarrah forest of Western Australia. Aust J Ecol 4:195–205

    Article  Google Scholar 

  • Smith NR, Kishchuk BE, Mohn WW (2008) Effects of wildfire and harvest disturbances on forest soil bacterial communities. Appl Environ Microbiol 74:216–224

    Article  PubMed  CAS  Google Scholar 

  • Society for Ecological Restoration International Science and Policy Working Group (2004) The SER International Primer on Ecological Restoration Society for Ecological Restoration International, Tuscon

    Google Scholar 

  • Todd MCL, Adams MA, Grierson PF (2000) Mineralisation of nitrogen in a chronosequence of rehabilitated bauxite mines. Aust J Soil Res 38:435–451

    Article  Google Scholar 

  • Torsvik V, Ovreas L, Thingstad TF (2002) Prokaryotic diversity – magnitude, dynamics, and controlling factors. Science 296:1064–1066

    Article  PubMed  CAS  Google Scholar 

  • Waldrop MP, Firestone MK (2006) Response of microbial community composition and function to soil climate change. Microb Ecol V52:716–724

    Article  Google Scholar 

  • Walker L, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ward SC (2000) Soil development on rehabilitated bauxite mines in south-west Australia. Aust J Soil Res 38:453–464

    Article  Google Scholar 

  • Ward SC, Pickersgill GE (1985) Biomass and nutrient distribution in eucalypt plantation growing on rehabilitated bauxite mines. Aust J Ecol 10:111–124

    Article  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, New Jersey

    Google Scholar 

  • Wardle DA, Zackrisson O, Nilsson M (1998) The charcoal effect in Boreal forests: mechanisms and ecological consequences. Oecologia 115:419–426

    Article  Google Scholar 

  • Wardle DA, Bonner KI, Barker GM (2000) Stability of ecosystem properties in response to above-ground functional group richness and composition. Oikos 89:11–23

    Article  Google Scholar 

  • Wehr JB, Fulton I, Menzies NW (2006) Revegetation strategies for bauxite refinery residue: a case study of Alcan Gove in Northern Territory, Australia. Environ Manage 37:297–306

    Article  PubMed  Google Scholar 

  • Westman WE (1986) Resilience: concepts and measures. In: Dell B, Hopkins AJM, Lamont BB (eds) Resilience in mediterranean-type ecosystems. Dr W Junk Publishers, Dordrecht, pp 5–19

    Google Scholar 

  • White PS, Walker JL (1997) Approximating nature’s variation: selecting and using reference information in restoration ecology. Restor Ecol 5:338–349

    Article  Google Scholar 

  • Williams K, Mitchell D (2001) Jarrah forest 1 (JF1 – Northern Jarrah forest subregion), A Biodiversity Audit of Western Australia’s 53 Biogeographical Subregions in 2002. Department of Environment and Conservation, Perth, pp 369–381

    Google Scholar 

  • Yin B, Crowley D, Sparovek G, De Melo WJ, Borneman J (2000) Bacterial functional redundancy along a soil reclamation gradient. Appl Environ Microbiol 66:4361–4365

    Article  PubMed  CAS  Google Scholar 

  • Zhou JZ, Xia BC, Treves DS, Wu LY, Marsh TL, O’Neill RV, Palumbo AV, Tiedje JM (2002) Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol 68:326–334

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge financial support from the Australian Research Council Linkage Grants scheme with industry funding from Alcoa of Australia Ltd. (project numbers LP0454127 and LP0776593). We thank Yoshi Sawada and Anna Byrne for valued technical support and reviewers of this chapter for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel V. Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Banning, N.C. et al. (2011). Rehabilitated Mine-Site Management, Soil Health and Climate Change. In: Singh, B., Cowie, A., Chan, K. (eds) Soil Health and Climate Change. Soil Biology, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20256-8_13

Download citation

Publish with us

Policies and ethics