Skip to main content

Structure of the Master Stability Function for Large Delay

  • Chapter
  • First Online:
Delay-Coupled Complex Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 852 Accesses

Abstract

To determine the stability of a synchronized state in a network of identical units, a powerful method has been developed called the master stability function (MSF). Recent works have started to investigate the MSF for networks with coupling delays. Time delay effects play an important role in realistic networks. For example, the finite propagation time of light between coupled semiconductor lasers significantly influence the dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the complex number \(re^{i\phi}\) is usually denoted by \(\alpha+i\beta\) in the literature.

References

  1. L.M. Pecora, T.L. Carroll, Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109 (1998)

    Article  ADS  Google Scholar 

  2. L.M. Pecora, M. Barahona, Synchronization of Oscillators in Complex Networks. in New Research on Chaos and Complexity, chap 5, ed. by F.F. Orsucci, N. Sala, (Nova Science Publishers, Hauppauge, 2006), pp. 65–96

    Google Scholar 

  3. M. Dhamala, V.K. Jirsa, M. Ding, Enhancement of neural synchrony by time delay. Phys. Rev. Lett. 92, 074104 (2004)

    Article  ADS  Google Scholar 

  4. W. Kinzel, A. Englert, G. Reents, M. Zigzag, I. Kanter, Synchronization of networks of chaotic units with time-delayed couplings. Phys. Rev. E. 79, 056207 (2009)

    Article  ADS  Google Scholar 

  5. C.-U. Choe, T. Dahms, P. Hövel, E. Schöll, Controlling synchrony by delay coupling in networks from in-phase to splay and cluster states. Phys. Rev. E. 81, 025205(R) (2010)

    Article  ADS  Google Scholar 

  6. H. Erzgräber, B. Krauskopf, D. Lenstra, Compound laser modes of mutually delay-coupled lasers. SIAM J. Appl. Dyn. Syst. 5, 30 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. W. Carr, I.B. Schwartz, M.Y. Kim, R. Roy, Delayed-mutual coupling dynamics of lasers: scaling laws and resonances. SIAM J. Appl. Dyn. Syst. 5, 699 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. O. D’Huys, R. Vicente, T. Erneux, J. Danckaert, I. Fischer, Synchronization properties of network motifs: Influence of coupling delay and symmetry. Chaos. 18, 037116 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. I. Fischer, R. Vicente, J.M. Buldú, M. Peil, C.R. Mirasso, M.C. Torrent, J. García-Ojalvo, Zero-lag long-range synchronization via dynamical relaying. Phys. Rev. Lett. 97, 123902 (2006)

    Article  ADS  Google Scholar 

  10. R. Vicente, L.L. Gollo, C.R. Mirasso, I. Fischer, P. Gordon, Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays. Proc. Natl. Acad. Sci. 105, 17157 (2008)

    Article  ADS  Google Scholar 

  11. H.J. Wünsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, H. Erzgräber, M. Peil, W. Elsäßer, I. Fischer, Synchronization of delay-coupled oscillators: A study of semiconductor lasers. Phys. Rev. Lett. 94, 163901 (2005)

    Article  ADS  Google Scholar 

  12. V. Flunkert, O. D’Huys, J. Danckaert, I. Fischer, E. Schöll, Bubbling in delay-coupled lasers. Phys. Rev. E. 79, 065201 R (2009)

    Article  ADS  Google Scholar 

  13. E. Rossoni, Y. Chen, M. Ding, J. Feng, Stability of synchronous oscillations in a system of Hodgkin-Huxley neurons with delayed diffusive and pulsed coupling. Phys. Rev. E. 71, 061904 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  14. C. Hauptmann, O. Omel‘chenko, O.V. Popovych, Y. Maistrenko, P.A. Tass, Control of spatially patterned synchrony with multisite delayed feedback. Phys. Rev. E. 76, 066209 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  15. C. Masoller, M.C. Torrent, J. García-Ojalvo, Interplay of subthreshold activity, time-delayed feedback, and noise on neuronal firing patterns. Phys. Rev. E. 78, 041907 (2008)

    Article  ADS  Google Scholar 

  16. E. Schöll, G. Hiller, P. Hövel, M.A. Dahlem, Time-delayed feedback in neurosystems. Phil. Trans. R. Soc. A. 367, 1079 (2009)

    Article  ADS  MATH  Google Scholar 

  17. M.A. Dahlem, M.H. Frank, W. Dobler, E. Schöll, (2008) Curvature-induced stabilization of particle-like waves. in prep. for Phys. Rev. Let.

    Google Scholar 

  18. P. Hövel, M.A. Dahlem,T. Dahms, G. Hiller,E. Schöll, (2009) Time-delayed feedback control of delay-coupled neurosystems and lasers, in Preprints of the Second IFAC meeting related to analysis and control of chaotic systems (CHAOS09) (World Scientific, Singapore), (arXiv:0912.3395)

    Google Scholar 

  19. A. Takamatsu, R. Tanaka, H. Yamada, T. Nakagaki, T. Fujii, I. Endo, Spatiotemporal symmetry in rings of coupled biological oscillators of physarum plasmodial slime mold. Phys. Rev. Lett. 87, 078102 (2001)

    Article  ADS  Google Scholar 

  20. V. Flunkert, S. Yanchuk, T. Dahms, E. Schöll, Synchronizing distant nodes: a universal classification of networks. Phys. Rev. Lett. 105, 254101 (2010)

    Article  ADS  Google Scholar 

  21. L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  22. F.M. Atay, J. Jost, A. Wende, Delays, connection topology, and synchronization of coupled chaotic maps. Phys. Rev. Lett. 92, 144101 (2004)

    Article  ADS  Google Scholar 

  23. G. Giacomelli, A. Politi, Relationship between delayed and spatially extended dynamical systems. Phys. Rev. Lett. 76, 2686 (1996)

    Article  ADS  Google Scholar 

  24. S. Yanchuk, M. Wolfrum (2005) Instabilities of equilibria of delay-differential equations with large delay, in Proceeding of the 5th EUROMECH Nonlinear Dynamics Conference ENOC-2005, Eindhoven, edited by D. H. van Campen, M. D. Lazurko, W. P. J. M. van den Oever (Eindhoven University of Technology, Eindhoven, Netherlands), pp. 1060–1065, eNOC Eindhoven (CD ROM), ISBN 90 386 2667 3

    Google Scholar 

  25. S. Yanchuk, M. Wolfrum, P. Hövel, E. Schöll, Control of unstable steady states by long delay feedback. Phys. Rev. E. 74, 026201 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  26. M. Wolfrum, S. Yanchuk, Eckhaus instability in systems with large delay. Phys. Rev. Lett. 96, 220201 (2006)

    Article  ADS  Google Scholar 

  27. S. Yanchuk, P. Perlikowski, Delay and periodicity. Phys. Rev. E. 79, 046221 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, G. Vattay, Chaos: Classical and Quantum. (Niels Bohr Institute, Copenhagen, 2008) http://ChaosBook.org

    Google Scholar 

  29. C. Grebogi, E. Ott, J.A. Yorke, Unstable periodic orbits and the dimensions of multifractal chaotic attractors. Phys. Rev. A. 37, 1711 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  30. Y.C. Lai, Y. Nagai, C. Grebogi, Characterization of the natural measure by unstable periodic orbits in chaotic attractors. Phys. Rev. Lett. 79, 649 (1997)

    Article  ADS  Google Scholar 

  31. P. Cvitanović, G. Vattay, Entire Fredholm determinants for evaluation of semiclassical and thermodynamical spectra. Phys. Rev. Lett. 71, 4138 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. P. Cvitanović, Dynamical averaging in terms of periodic orbits. Phys. D. 83, 109 (1995)

    Article  MathSciNet  Google Scholar 

  33. M.A. Zaks, D.S. Goldobin, Comment on time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems. Phys. Rev. E. 81, 018201 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  34. Y. Nagai, Y.C. Lai, Periodic-orbit theory of the blowout bifurcation. Phys. Rev. E. 56, 4031 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  35. J. Lehnert, Dynamics of Neural Networks with Delay. (Master’s thesis Technische Universität, Berlin, 2010)

    Google Scholar 

  36. E. Ott, J.C. Sommerer, Blowout bifurcations: the occurrence of riddled basins and on-off intermittency. Phys. Lett. A . 188, 39 (1994)

    Article  ADS  Google Scholar 

  37. P. Ashwin, J. Buescu, I. Stewart, From attractor to chaotic saddle: a tale of transverse instability. Nonlinearity. 9, 703 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. A. Englert, W. Kinzel, Y. Aviad, M. Butkovski, I. Reidler, M. Zigzag, I. Kanter, M. Rosenbluh, Zero lag synchronization of chaotic systems with time delayed couplings. Phys. Rev. Lett. 104, 114102 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Flunkert .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flunkert, V. (2011). Structure of the Master Stability Function for Large Delay. In: Delay-Coupled Complex Systems. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20250-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20250-6_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20249-0

  • Online ISBN: 978-3-642-20250-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics