Skip to main content

An FTL-Agnostic Layer to Improve Random Write on Flash Memory

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6637))

Abstract

Flash memories are considered a competitive alternative to rotating disks as non-volatile data storage for database management systems. However, even if the Flash Translation Layer – or FTL – allows both technologies to share the same block interface, they have different preferred access patterns. Database management systems could potentially benefit from flash memories as they provide fast random access for read operations although random writes are generally not as efficient as sequential writes. In this paper, we propose a simple data placement algorithm designed for flash memories, to reorganize inefficient random writes in a quasi-sequential access pattern. This access pattern is first established encouraging for a subset of flash devices by identifying a strong correlation between spatial locality and write performances, with a distance being defined to quantify this effect. This design is then validated by a formalization with a mathematical model, along with experimental results. With this optimization, random write potentially become as efficient as sequential write, improving random write speed by up to two orders of magnitude.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J.D., Manasse, M., Panigrahy, R.: Design Tradeoffs for SSD Performance. In: 2008 USENIX Annual Technical Conference, pp. 57–70. USENIX Association (2008)

    Google Scholar 

  2. Birrell, A., Isard, M., Thacker, C., Wobber, T.: A Design for High-Performance Flash Disks. SIGOPS Operating Systems Review 41(2), 88–93 (2007)

    Article  Google Scholar 

  3. Bouganim, L., Jónsson, B.T., Bonnet, P.: uFLIP: Understanding Flash IO Patterns. In: 4th Biennial Conference on Innovative Data Systems Research (2009)

    Google Scholar 

  4. Chen, S.: FlashLogging: Exploiting Flash Devices for Synchronous Logging Performance. In: 35th International Conference on Management of Data, pp. 73–86. ACM, New York (2009)

    Google Scholar 

  5. Gray, J., Fitzgerald, B.: Flash Disk Opportunity for Server Applications. Queue 6(4), 18–23 (2008)

    Article  Google Scholar 

  6. Kim, J., Oh, Y., Kim, E., Choi, J., Lee, D., Noh, S.H.: Disk Schedulers for Solid State Drives. In: 7th International Conference on Embedded Software, pp. 295–304. ACM, New York (2009)

    Google Scholar 

  7. Kim, Y.R., Whang, K.Y., Song, I.Y.: Page-Differential Logging: An Efficient and DBMS-independent Approach for Storing Data into Flash Memory. In: 36th International Conference on Management of Data, pp. 363–374. ACM, New York (2010)

    Google Scholar 

  8. Lee, S.W., Moon, B.: Design of Flash-Based DBMS: An In-Page Logging Approach. In: 33th International Conference on Management of Data, pp. 55–66. ACM, New York (2007)

    Google Scholar 

  9. Lee, S.W., Moon, B., Park, C.: Advances in Flash Memory SSD Technology for Enterprise Database Applications. In: 35th International Conference on Management of Data, pp. 863–870. ACM, New York (2009)

    Google Scholar 

  10. Nath, S., Gibbons, P.B.: Online Maintenance of Very Large Random Samples on Flash Storage. PVLDB 1(1), 970–983 (2008)

    Google Scholar 

  11. Stoica, R., Athanassoulis, M., Johnson, R., Ailamaki, A.: Evaluating and Repairing Write Performance on Flash Devices. In: 5th International Workshop on Data Management on New Hardware, pp. 9–14. ACM, New York (2009)

    Google Scholar 

  12. Wang, Y., Goda, K., Kitsuregawa, M.: Evaluating Non-In-Place Update Techniques for Flash-Based Transaction Processing Systems. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp. 777–791. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Zhou, D., Meng, X.: RS-Wrapper: Random Write Optimization for Solid State Drive. In: 18th Conference on Information and Knowledge Management, pp. 1457–1460. ACM, New York (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chardin, B., Pasteur, O., Petit, JM. (2011). An FTL-Agnostic Layer to Improve Random Write on Flash Memory. In: Xu, J., Yu, G., Zhou, S., Unland, R. (eds) Database Systems for Adanced Applications. DASFAA 2011. Lecture Notes in Computer Science, vol 6637. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20244-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20244-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20243-8

  • Online ISBN: 978-3-642-20244-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics