Beyond the Minimal Standard Model

  • Florian ScheckEmail author
Part of the Graduate Texts in Physics book series (GTP)


The GSW theory is a great step forward in our understanding of electroweak interactions because it allows the well-known extremely successful theory of quantized electrodynamics and the theory of the weak CC and NC interactions to be cast into one unified, renormalizable local gauge theory. Renormalizability, in particular, is a very desirable property of the theory because it makes covariant perturbation theory a reasonable and well-defined approximation method for calculating physical quantities beyond the lowest order diagrams. Nevertheless, this model, very likely, is not the corner stone of a final theory of weak and electromagnetic interactions. It contains very many parameters which are not predicted and whose origin remains unclear. The most prominent and specific properties of the weak interactions are built into the model (see e.g. the discussion in Sects. 3.4.1 a,b) and are not predicted. One of these is parity violation: The fact that QED conserves parity whereas (bare) CC interactions as well as neutrino induced NC interactions break parity maximally, is introduced into the theory by hand. There is not even a hint at an answer to the question of why right-handed neutrino states decouple from the physical world. Furthermore, the accuracy to which some of the empirical information on weak interactions is known, is limited, and there is indeed room for deviations from this minimal picture.


Form Factor Neutrino Masse Structure Term Mass Eigenstates Axial Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adler, S. L., 1965, Phys. Rev. 140B, 736.Google Scholar
  2. Bergsma, F. et al, 1983, Phys. Lett. 122B, 465.Google Scholar
  3. Bethe, H. A. (1986) Phys. Rev. Lett. 56, 1305.Google Scholar
  4. Burkhard, H. et al., 1985, Phys Lett. 160B, 343, see also.Google Scholar
  5. Corriveau, F. et al., 1981, Phys. Rev. D24, 2004; 1983, Phys. Lett. 129B, 260.Google Scholar
  6. Fetscher, W. et al., 1986, Phys. Lett. B173, 102.Google Scholar
  7. Fetscher, W., 1984, Phys. Lett. 140B, 117.Google Scholar
  8. Fierz, M., 1937, Z. Physik104, 553.Google Scholar
  9. Fischer, W. and Scheck, F., 1974, Nucl. Phys. B83, 25.Google Scholar
  10. Geiregat, D., 1990, Phys. LettB247, 131.Google Scholar
  11. Kuznetsov, A. V., 1981, Yad. Fiz. 34, 1318.Google Scholar
  12. Jodidio, A. et al., 1986, Phys. Rev. D34, 1967, and 1988, Phys. Rev. D37, 237.Google Scholar
  13. Jonker, M. et al., 1980, Phys. Lett93B, 203.Google Scholar
  14. Mehr, M.-T. and Scheck, F., 1979, Nucl. Phys. B149, 123, Erratum: Nucl. Phys. B234 (1984) 547Google Scholar
  15. Mikheyev, S. P. and Smirnov, A. Yu., 1985 Sov. J. Nucl. Phys. 42, 913.Google Scholar
  16. Missimer, J. et al., 1981, Nucl. PhysB188, 29.Google Scholar
  17. Missimer, J. and Simons, S. L., 1985, The weak neutral current of the muon, Phys. Rep. 118, 179.ADSCrossRefGoogle Scholar
  18. Mursula, K. and Scheck, F., 1985, Nucl. Phys. B253, 189.Google Scholar
  19. Mishra, S. R. et al., 1990, Phys. Lett. B252, 170.Google Scholar
  20. Scheck, F., 1978, Phys. Rep. 44, 187.Google Scholar
  21. Scheck, F. and Wullschleger, A., 1973, Nucl. Phys. B67, 504.Google Scholar
  22. Shrock, R.E., 1981, Phys. Rev. D24, 1232.Google Scholar
  23. Steigmann, G., 1979, Ann. Rev. Nucl. Part. Sci. 29, 313.Google Scholar
  24. Weinberg, S., 1966, Phys. Rev. Lett. 17, 17.Google Scholar
  25. Weisberger, W. I., 1966, Phys. Rev. 143, 1302.Google Scholar
  26. Willis, S. E., et al., 1980, Phys. Rev. Lett. 44, 522, Erratum 45, 1370.Google Scholar
  27. Wolfenstein L. 1978 Phys. Rev. D17 2369.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für Physik Theoretische ElementarteilchenphysikUniversität MainzMainzGermany

Personalised recommendations