Advertisement

Electromagnetic Processes and Interactions

  • Florian ScheckEmail author
Chapter
  • 2k Downloads
Part of the Graduate Texts in Physics book series (GTP)

Abstract

The electron, the muon, and their neutrinos are important tools in testing the structure of the fundamental electromagnetic and weak interactions. On the other hand, if these interactions are known, they serve as ideal probes for the internal structure of complex hadronic targets such as nucleons and nuclei. Although electroweak interactions should in fact be discussed as a whole and on the same footing, purely electromagnetic interactions play a distinctive role, for obvious experimental reasons: At low and intermediate energies the effective electromagnetic coupling is larger by many orders of magnitude than the weak couplings, so that electromagnetic processes are measurable to much higher accuracy than purely weak processes.

Keywords

Form Factor Elastic Scattering Partial Wave Deep Inelastic Scattering Born Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alder, K., A. Bohr, T. Huus, B. Mottelson and A. Winther, 1956, Rev. Mod. Phys. 28, 432.Google Scholar
  2. Alder, K. and T.H. Schucan, 1963, Nucl. Phys. 42, 498.Google Scholar
  3. Bailey, J., K. Borer, F. Combley, H. Drumm, C. Eck, F.J.M. Farley, J.H. Field, W. Flegel, P.M. Hattersley, F. Krienen, F. Lange, G. Lebée, E. McMillan, G. Petrucci, E. Picasso, O. Runolfsson, W. von Rüden, R.W. Williams and S. Wojcicki, 1979, Nucl. Phys. B150, 1.Google Scholar
  4. Blomqvist, J., 1972, Nucl. Phys. B48, 95.Google Scholar
  5. Borie, E.F. and G.A. Rinker, 1982, Rev. Mod. Phys. 54, 67.Google Scholar
  6. Borkowski, F., G.G. Simon, V.H. Walther and R.D. Wendling, 1975, Nucl. Phys. B93, 461.Google Scholar
  7. Borkowski, F., G. Höhler, E. Pietarinen, I. Sabba-Stefanescu, G.G. Simon, V.H. Walther and R.D. Wendling, 1976, Nucl. Phys. B114, 505.Google Scholar
  8. De Forest, T. and J.D. Walecka, 1975, Adv. in Phys. 15, 1.Google Scholar
  9. Donnelly, T.W. and J.D. Walecka, 1975, Ann. Rev. Nucl. Sci. 25, 329.Google Scholar
  10. Elton, L.R.B., 1953, Proc. Roy. Soc. (London) A66, 806.Google Scholar
  11. Engfer, R., H. Schneuwly, J.L. Vuilleumier, H.K. Walter and A. Zehnder, 1974, Atomic and Nuclear Data Tables 14, 509.ADSCrossRefGoogle Scholar
  12. Friedrich, J. and F. Lenz, 1972, Nucl. Phys. A183, 523.Google Scholar
  13. Friar, J.L. and J.W. Negele, 1973, Nucl. Phys. A212, 93.Google Scholar
  14. Frois, B. and C.N. Papanicolas, 1987, Ann. Rev. Nucl. Part. Sci. 37, 133.Google Scholar
  15. Griffy, T.A., D.S. Onley, J.T. Reynolds and L.C. Biedenharn, 1963, Phys. Rev. 128, 833 and 129, 1698.Google Scholar
  16. Lenz, F., 1969, Zeit. Physik 222, 491.Google Scholar
  17. Mott, N.F., 1929, Proc. Roy. Soc. (London) A124, 429.Google Scholar
  18. Ravenhall, D.G., D.R. Yennie and R.N. Wilson, 1954, Phys. Rev. 95, 500.Google Scholar
  19. Reynolds, J.T., D.S. Onley and L.C. Biedenharn, 1964, J. Math. Phys. 5, 411.Google Scholar
  20. Rosenbluth, M.N., 1950, Phys. Rev. 79, 615.Google Scholar
  21. Scheck, F., 1978, Phys. Reports 44, 187.Google Scholar
  22. Scheck, F., 1966, Nucl. Phys. 77, 577.Google Scholar
  23. Sick, I., 1974, Nucl. Phys. A218, 509 and Phys. Lett. 53B, 15.Google Scholar
  24. Simon, G.G., Ch. Schmitt, F. Borkowski and V.H. Walther, 1980, Nucl. Phys. A333, 381.Google Scholar
  25. Uehling, E.A., 1935, Phys. Rev. 48, 55.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für Physik Theoretische ElementarteilchenphysikUniversität MainzMainzGermany

Personalised recommendations